UAGS Problem Set 4

Wyatt Reeves

Problem 1 Which of the following conic sections are isomorphic to each other?

- Line
- Parabola
- Ellipse
- Hyperbola

Problem 2 By endowing any subset X of \mathbb{A}^n with the subspace topology induced from the Zariski topology on \mathbb{A}^n , we can make sense of what it means for a function $f: X \to \mathbb{A}^1$ to be regular. Write k[X] for the ring of regular functions on X. If D(f) is the principal affine open associated to f, prove that $k[D(f)] = k[\mathbb{A}^n][f^{-1}]$.

Problem 3 We can similarly generalize the notion of a regular map and regular isomorphism to more general subsets of \mathbb{A}^n . Say that a subset of \mathbb{A}^n is affine if it is isomorphic to an affine variety. Prove that D(f) is affine. [Hint: note that $\mathbb{A}^1 \setminus 0 \cong V(xy-1)$]

Problem 4 Prove that regular maps are continuous with respect to the Zariski topology.