UAGS Problem Set 3

Wyatt Reeves

- **Problem 1** Prove the following facts about V and \mathcal{I} without using the Nullstellensatz:
 - **Part a** If I_1 and I_2 are ideals of $k[\mathbb{A}^n]$, then $I_1 \subseteq I_2$ implies $V(I_2) \subseteq V(I_1)$.
 - **Part b** If X_1 and X_2 are subsets of \mathbb{A}^n , then $X_1 \subseteq X_2$ implies $\mathcal{I}(X_2) \subseteq \mathcal{I}(X_1)$.
 - **Part c** For all ideals I of $k[\mathbb{A}^n]$, we have $I \subseteq \mathcal{I}(V(I))$.
 - **Part d** For all subsets X of \mathbb{A}^n , we have $X \subseteq V(\mathcal{I}(X))$
 - **Part e** For all ideals I of $k[\mathbb{A}^n]$, we have $V(\mathcal{I}(V(I))) = V(I)$.
 - **Part f** For all subsets X of \mathbb{A}^n , we have $\mathcal{I}(V(\mathcal{I}(X))) = \mathcal{I}(X)$.

Problem 2 Prove that furthermore for subsets X of \mathbb{A}^n , we have $V(\mathcal{I}(X)) = \overline{X}$, where \overline{X} is the closure of X with respect to the Zariski topology.