
UAGS Lecture Notes 2

Wyatt Reeves

1 More on the Zariski Topology

We didn’t do problem 2 from problem set 1 during recitation, so here is the solution (at least to the draw a
picture part):

Figure 1: Upper left: V (x − a, y − b), Upper right: V (x2 − y), Lower left: V (x2 − x), Lower right; V (x2).
Here we take the underlying field to be R for each picture.

Note a couple of things from this. First, note that V (x2) = V (x), even though (x2) 6= (x) in k[x, y].
Evidently the relationship between ideals and varieties isn’t one-to-one. We will revisit this relationship
later in the lecture. More qualitatively, note that all of the proper closed subsets in the Zariski topology are
“small” or “thin” compared to the kinds of closed subsets that you see in the real-analytic topology. The
corresponding statement for open sets is that the open sets in the Zariski topology are all quite large. More
precisely, we can say that in general the Zariski topology on An won’t be Hausdorff.

Definition 1.1. A topological space X is Hausdorff if for every pair p, q of distinct points in X, there are
non-intersecting open sets U, V such that p ∈ U and q ∈ V .

Intuitively, the open sets in the Zariski topology are “too big” to not overlap. The open sets of the Zariski
topology are at least refined enough that the following holds:

Proposition 1.2. Every point in An is closed in the Zariski topology.

Proof. If p = (p1 . . . pn) and k[An] = k[x1 . . . xn], then p = V (x1 − p1 . . . xn − pn).

We can describe the Zariski topology very explicitly in the case of A1

Proposition 1.3. The closed sets in the Zariski topology on A1 are exactly the finite sets.

Proof. Let k[A1] = k[x]. Then for any finite collection of points X = {p1 . . . pn}, consider the polynomial

f(x) =

n∏
i=1

(x− pi).

Then X = V (f). Conversely, let I be an ideal in k[x]. We know k[x] is a PID, so I = (f) for some polynomial
f . Any polynomial has only finitely many roots, so V (I) = V (f) contains only finitely many points.

We now introduce a property which is a sort of analog of connectedness for spaces with relatively few
open sets
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Definition 1.4. A topological space X is irreducible if any two non-empty open sets have a nonempty
intersection. Equivalently, in terms of closed sets, a topological space is irreducible if and only if the union
of any two proper closed sets is again a proper closed set.

Any Hausdorff space with more than one point isn’t irreducible, since we can take neighborhoods U, V
of any two distinct points that are disjoint. Both U and V are non-empty, but their intersection isn’t. In
our case, however, we have the following result.

Proposition 1.5. Let our underlying field k be infinite. Then the Zariski topology on An is irreducible.

Proof. Suppose I and J are two ideals of An such that V (I) and V (J) are proper closed subsets of An. Then
we know that I must contain some nonzero polynomial f and J must contain some nonzero polynomial
g (otherwise V (I), V (J) wouldn’t be proper). We know that V (I) ∪ V (J) = V (IJ), and IJ contains the
nonzero polynomial fg. Since k is infinite, we know that there is at least one point p of An where fg doesn’t
vanish, so p /∈ V (IJ) and we conclude that V (I) ∪ V (J) is again a proper subset of An.

2 Cayley-Hamilton Again

We first prove the following preliminary result:

Lemma 2.1. Let f : An → A1 be a polynomial map. Then f is continuous with respect to the Zariski
topologies on An and A1.

Proof. We need to show that if K is a closed subset of A1 then f -1(K) is a closed subset of An. By
Proposition 1.3, we know that K = {a1 . . . an}, so f -1(K) =

⋃n
i=1 f

-1(ai). But f -1(ai) is exactly the set of
points (x1 . . . xn) ∈ An such that

f(x1 . . . xn) = ai,

in other words, V (f−ai), which is closed. So f -1(K) is a finite union of closed sets, and therefore closed.

Now we can prove the Cayley-Hamilton theorem over an arbitrary algebraically closed field:

Theorem 2.2 (Cayley-Hamilton). Let V be a finite-dimensional vector space over an algebraically closed
field k. Let T : V → V be a linear transformation. If pT is the characteristic polynomial of T , then
pT (T ) = 0.

Proof. By picking a basis for V , we can identify End(V ) with Matn(k) ∼= An2

, where n is the dimension of V .
Having done this, note that the coefficients of pT are polynomials in the entries of the matrix A representing
T , so the statement pT (T ) = 0 is equivalent to the statement pij(a11 . . . ann) = 0 for 1 ≤ i, j ≤ n, where
pij is a polynomial in the entries of A that equals the i, jth entry of pT (T ). We will now show that
these polynomials are all 0. Whenever T is diagonalizable, we know by the argument given last time that
pT (T ) = 0, so pij = 0 for all i, j. Note that whenever disc(pT ) 6= 0 we know that pT has no repeated roots,
so we know that T is diagonalizable. Therefore on An \ V (disc) we know that pij = 0 for all i, j. However,

by Proposition 1.5 we know that the Zariski-open subsets of An2

are Zariski-dense. Since pij is a continuous

map from An2

to A1 (Lemma 2.1) and since points in A1 are closed (Proposition 1.2), we must therefore

conclude that pi,j = 0 on all of An2

for all i, j. This shows that pT (T ) = 0 for all T : V → V .

From this a more general result immediately follows:

Corollary 2.3. Let A be an integral domain and let M be a finitely-generated free A-module and let T :
M →M be an A-linear map. If pT is the characteristic polynomial of T , then pT (T ) = 0.

Proof. Embed A into the algebraic closure of its fraction field and apply the previous theorem.

This illustrates a more general phenomenon. If we understand algebra over algebraically closed fields, we
can often gain information about more general fields by embedding them into their algebraic closure, doing
some computation there, and then extracting back out the original information we wanted to understand.
As a result, from here on, unless otherwise stated, we will always assume our underlying field to be
algebraically closed.
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3 Hilbert’s Nullstellensatz

We now define an operation that is in some sense “opposite to” V .

Definition 3.1. Given X a subset of An, define I(X) to be the ideal of functions f ∈ k[An] such that
f(p) = 0 for all p ∈ X.

Example 3.2. Consider S = I(V (x)). If f(x, y) ∈ S, write f = fn(y)xn + . . .+ f0(y). Then since f ∈ S we
know that f(0, y) = f0(y) has to vanish for all y, so

f = x(fn(y)xn−1 + . . . + f1(y)),

so S ⊆ (x). Conversely, if f ∈ (x) then f vanishes on V (x), so S = (x).

clearly I isn’t exactly inverse to V , since I(V (x)) = I(V (x2)) = (x). However, it does seem to be
somehow related.

Definition 3.3. Let I be an ideal of a commutative ring A. Then
√
I is the set of all elements a ∈ A such

that an ∈ I.

The following powerful theorem due to David Hilbert makes the relationship between V and I completely
explicit.

Theorem 3.4 (Hilbert). Let k be algebraically closed and let I be an ideal of k[An]. Then I(V (I)) =
√
I.

We delay the proof of this theorem until later, when we have more commutative algebra under our belts.
We’ll go ahead and apply it to get the following result:

Proposition 3.5. Let X1, X2 ⊆ An be disjoint closed subsets. Then there is a polynomial f ∈ k[An] that
vanishes on X1 but evaluates to 1 on X2.

Proof. Let X1 = V (I1) and X2 = V (I2). Since X1 and X2 are disjoint, X1 ∩X2 = V (I1 + I2) = ∅. By the
Nullstellensatz, √

I1 + I2 = I(V (I1 + I2)) = I(∅) = k[An].

in particular, 1 ∈
√
I1 + I2, so 1n = 1 ∈ I1 + I2. We see that there is some f ∈ I1 and some g ∈ I2 such

that f = 1 − g. Since f ∈ I1 we know that f vanishes on X1, and since g vanishes on X2, we know that f
evaluates to 1 on X2, so f is our desired function.

This gives an analog of algebraic geometry of Urysohn’s Lemma for more general topological spaces.
Urysohn’s Lemma only applies in general to normal spaces, however, which is a category that includes
basically none of the spaces we consider. This proposition can be thought of as telling us that our spaces
are more separated than they might seem.
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