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1 Introduction

What is algebraic geometry? At a basic level, it studies shapes that are defined as the solutions to some
system of polynomial equations. Many shapes we care about – for example circles, hyperbolas, parabolas,
cones, and spheres – arise in this way. Even though a general geometric object, like the graph of the
Weierstrass everywhere continuous, nowhere differentiable function, might be hard to understand, shapes
defined through polynomials will presumably be nicer. Because of this, one of the themes of algebraic
geometry will be that algebra tells us about geometry. The converse of this statement is maybe less
clear, but still true: geometry tells us about algebra. To get an idea for how this might work, consider
the following theorem:

Theorem 1.1 (Cayley-Hamilton). Let V be a finite dimensional vector space and let T : V → V be a linear
transformation. If pT is the characteristic polynomial of T , then pT (T ) = 0.

Proof. We will prove this statement only over the complex numbers. First, suppose that T is diagonalizable.
Then there is some basis where the matrix representing T is diag(λ1 . . . λn) (in other words T has diagonal
entries Tii = λi and 0 elsewhere). Then

pT (x) =

n∏
i=1

(x− λi),

so
pT (T ) = diag(0, λ2 − λ1 . . . λn − λ1) · diag(λ1 − λ2, 0 . . . λn − λ2) · . . . · diag(λ1 − λn . . . 0) = 0.

Now choose a basis for V , so that we can identify End(V ) ∼= Matn(C) ∼= Cn2

. Note that the coefficients of
the characteristic polynomial of a matrix are polynomials in the entries of the matrix. Moreover, note that
the expression

(AB)ij =

n∑
k=1

AikBkj

gives the entries of the product of two matrices as a polynomial in terms of the entries of the matrices being
multiplied. In a similar, the entries of the sum of two matrices are given by polynomials in terms of the
entries of the matrices being summed. As a result, the expression pT (T ) = 0 can be written out explicitly
as a system of n2 polynomial equations in terms of the n2 entries of T . As a result, if we can prove that
diagonalizable transformations are dense inside of End(V ) ∼= Matn(C) ∼= Cn2

, then we’ll be done: because
polynomials are continuous, if they are 0 on a dense subset of our space, they’ll be dense everywhere.

To see that diagonalizable transformations are dense in End(V ), suppose that T is any linear transforma-
tion V → V . Then choose a basis such that the matrix M representing T in this basis is in Jordan canonical
form. By perturbing the diagonal entries of M by as small of an amount as we want, we can obtain a matrix
M ′ where the diagonal entries are all distinct. But since M ′ is upper-triangular,

pM ′(x) =

n∏
i=1

(x−M ′
ii).

Since the roots of pM ′ are all distinct, this shows that M ′ is diagonalizable, so we’re done.

We see that by using a “geometric argument” (about the density of some subset) we can prove a theorem
with a purely algebraic statement. We were, however, only able to prove the Cayley-Hamilton theorem over
C, even though it’s true over an arbitrary field. This is because we currently only understand the geometry
of C, and not of other fields. Can we find a way to think geometrically about an arbitrary field?
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2 The Zariski Topology

Let k be any field. Let An, called “affine n-space” be the collection of points in kn. The ring of polynomial
functions on An, which we’ll write k[An], is just k[x1 . . . xn]. Let I be an ideal of k[An]. Then define V (I),
the “vanishing locus” of I, to be

V (I) = {p ∈ An | f(p) = 0 for all f ∈ I} .

A set of the form V (I) for some I will be called an “affine algebraic variety”. The Zariski topology on An
will be the topology such that the closed subsets are exactly the affine algebraic varieties.

Theorem 2.1. The Zariski topology is really a topology.

Proof. We must show three things.

1. An and ∅ are affine algebraic varieties.

2.
⋂
α V (Iα) is an affine algebraic variety.

3. V (I1) ∪ V (I2) is an affine algebraic variety.

For 1, note that An = V (0) and ∅ = V (1). For 2, consider the ideal J =
∑
α Iα. If p ∈ V (J), then for

any α and any f ∈ Iα, we know that f ∈ J , so f(p) = 0. As a result, p ∈ V (Iα) for all α, so p ∈
⋂
α V (Iα).

Conversely, suppose that p ∈
⋂
α V (Iα). For any f ∈ J , we know by definition that

f =

n∑
i=1

fi,

where fi ∈ Iαi
for some αi. As a result,

f(p) =

n∑
i=1

fi(p) = 0,

so p ∈ V (J). We conclude that
⋂
α V (Iα) is an affine algebraic variety, since it equals V (J). Finally, for 3,

consider the ideal J = I1I2. If p ∈ V (J) and p /∈ V (I1), then there is some g ∈ I1 such that g(p) 6= 0. Since
for any h ∈ I2 we know that f = gh ∈ J , we see that

0 = f(p) = g(p)h(p),

and since g(p) 6= 0, we can conclude that h(p) = 0. Since this is true for all h ∈ I2, we conclude that
p ∈ V (I2). Since any p ∈ V (J) is in V (I1) or, if not, V (I2), we see that V (J) ⊆ V (I1) ∪ V (I2). Conversely,
suppose that p ∈ V (I1). Then for any f ∈ J , we know that

f =

n∑
i=1

gihi,

with gi ∈ I1 and hi ∈ I2 for all i. As a result,

f(p) =

n∑
i=1

gi(p)hi(p) =

n∑
i=1

0 · hi(p) = 0,

so p ∈ V (J). By a similar argument we see that if p ∈ V (I2) then p ∈ V (J), so we conclude that
V (I1) ∪ V (I2) = V (J), which shows 3.
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