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Abstract

I’m compiling these notes for a Directed Reading Program I’m currently doing.
These are for personal use so buyer beware!

1 Banach Spaces

One of the basic ways that we’ll prove the existence of solutions to differential equations is
to construct a Cauchy sequence of “approximate solutions” which come closer and closer
to solving the specified differential equation. For this sequence to converge, our underlying
space of functions will need to be complete: the theory of Banach spaces is the natural
setting to study complete function spaces.

todo: rename base field F for consistency with later sections.

Definition 1.1. A Normed Vector Space is a pair (V, ||·||), where V is a vector space
over field K which is either R or C and ||·|| : V → R≥0 is a function satisfying the following
three conditions:

1. ||v|| = 0 if and only if v = 0.

2. ||λv|| = |λ| ||v|| for all λ ∈ K.

3. ||v + w|| ≤ ||v||+ ||w||.

In what follows, we will often abuse notation and use V to refer to both the NVS (V, ||·||)
and its underlying vector space. We can naturally give a NVS (V, ||·||) the structure of a
metric space by decreeing that the distance between any two vectors v, w ∈ V is ||v − w||
(it is left as an exercise to check that this distance function satisfies the appropriate axioms
for a metric space).

todo: at some point I should probably mention/prove that the norm is continuous

Definition 1.2. A Banach space is a NVS V which is complete with respect to the
metric associated to its norm.

1



Example 1.3. The vector space Rn equipped with the norm ||v|| =
√
v2

1 + . . .+ v2
n a Banach

space (this should be familiar from undergraduate analysis). Surprisingly, it is the case
that every finite dimensional Banach space is in some sense “basically the same” as this
example. There are, however, many different infinite dimensional Banach spaces. We will
meet many of them in these notes.

Definition 1.4. For a compact topological space K and a Banach space V , let C(K,V )
denote the vector space of continuous functions K → V .

Theorem 1.5. C(K,V ) becomes a Banach space when equipped with the norm ||·||∞, where

||f ||∞ = sup
x∈K
||f(x)||V

Proof. For any f ∈ C(K,V ), because K is compact and f is continuous, we know that
||f(K)||V is also compact and therefore a bounded subset of R. This shows that ||f ||∞ is
some finite number, so ||·||∞ is a well-defined function from C(K,V ) to R≥0. A straight-
forward application of the basic properties of sup shows that (C(K,V ), ||·||∞) is a NVS
(this is left as an exercise).

To see that C(K,V ) is complete with respect to ||·||∞, suppose that {fn} is a Cauchy
sequence with respect to ||·||∞. In other words, ||fi − fj ||∞ goes to zero as i and j go to
∞. Then for every point x ∈ K, the sequence {fn(x)} is a Cauchy sequence in V , since

||fi(x)− fj(x)||V ≤ sup
x∈K
||fi(x)− fj(x)||V

= ||fi − fj ||∞

so ||fi(x)− fj(x)||V also goes to zero as i, j go to∞. Since V is complete, this implies that
fn(x) converges to some value yx as n goes to ∞. Define f : K → V to be the function
such that f(x) = yx for all x ∈ K. To conclude, we want to show that fn converges to f
and that f is continuous.

To show that fn converges to f , fix ε > 0 and let N be large enough that ||fi − fj ||∞ < ε
for all i, j ≥ N . Then for any k ≥ N and any x ∈ K we know that

||f(x)− fk(x)||V = lim
i→∞
||fi(x)− fk(x)||V

≤ lim
i→∞

sup
x∈K
||fi(x)− fk(x)||V

= lim
i→∞
||fi − fk||∞

≤ ε

so

||f − fk||∞ ≤ sup
x∈K
||f(x)− fk(x)||V ≤ ε.
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This shows that ||f − fk||∞ goes to 0 as k goes to ∞ as desired.
To see that f is continuous, fix x0 ∈ K and ε > 0. By our previous argument there

is some k such that ||f − fk||∞ < ε/3. Since fk is continuous, there is some open neigh-
borhood U of x0 such that ||f(x)− f(x0)||V < ε/3 for any x ∈ U . We therefore know
that

||f(x)− f(x0)||V ≤ ||f(x)− fk(x)||V + ||fk(x)− fk(x0)||V + ||fk(x0)− f(x0)||V
< ||f − fk||∞ + ε/3 + ||fk − f ||∞
< ε.

Since we can find such a U for any ε > 0, this implies that f is continuous at x0, and
since this is true for every x0 in K, this implies that f is continuous. We have therefore
shown that every Cauchy sequence fn in C(K,V ) converges to an element f of C(K,V ),
completing our proof that C(K,V ) is a Banach space.

We will now prove the first of several important theorems that will allow us to prove
the existence of solutions to differential equations in the context of Banach spaces.

Definition 1.6. If (X, d) is a metric space and 0 ≤ α < 1, an α−contraction mapping
is a map T : X → X such that d(Tx, Ty) ≤ αd(x, y) for every x, y ∈ X. A contraction
mapping is a map that is an α−contraction mapping for some 0 ≤ α < 1.

Note that every contraction mapping is automatically continuous (this is an exercise).

Theorem 1.7 (Banach Fixed Point Theorem). Let (X, d) be a complete metric space and
let T : X → X be a contraction mapping. Then T has a unique fixed point.

Proof. First, to see that the fixed point is unique, suppose that x and y are both fixed
points of T , so Tx = x and Ty = y. Then

d(x, y) = d(Tx, Ty) ≤ αd(x, y).

Since α < 1, this implies that d(x, y) must be 0, so x = y. Now to show the existence of a
fixed point we must use the fact that X is complete. Pick any point x ∈ X and consider
the sequence xn = Tnx. We will show that this sequence is Cauchy and it converges to the
fixed point of T . Let δ denote d(x, Tx). We want to bound d(T ix, T jx) as i and j grow
large. If i = j then d(T ix, T ix) = 0, so suppose without loss of generality that i > j. Then

d(T ix, T jx) ≤ d(T ix, T i−1x) + d(T i−1x, T i−2x) + . . .+ d(T j+1x, T jx)

≤ αi−1δ + αi−2δ + . . . αjδ

= αjδ

i−j−1∑
k=0

αk

≤ αjδ

1− α
.
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For any ε > 0, since α < 1 there is some large N such that for all j ≥ N we know that

αj < (1− α)ε/δ

so for all i, j ≥ N we see that d(T ix, T jx) < ε. Since this is true for all ε > 0 we see that
the sequence xn = Tnx is Cauchy. Because we have assumed that (X, d) is a complete
metric space, this implies that xn converges to some value y. To see that y is a fixed point
of T , note that since T is continuous,

Ty = lim
n→∞

Txn

= lim
n→∞

Tn+1x

= lim
n→∞

xn+1

= y.

We have therefore proven the existence and uniqueness of a fixed point of T in X, as
desired.

Exercises

Exercise 1.8. Given a NVS (V, ||·||), prove that the function d(v, w) = ||v − w|| satisfies
the axioms of a distance function on a metric space.

Exercise 1.9. Prove that (C(K), ||·||∞) is a NVS for any compact topological space K.

Exercise 1.10. Prove that every contraction mapping is continuous.

Exercise 1.11. Prove that the mapping Tx = x/2 + 1/x is a contraction mapping on
[1,∞). Show that

√
2 is a fixed point of T . Use the Banach fixed point theorem to

describe an iterative algorithm for computing
√

2.

Exercise 1.12. Show that if T is an α-contraction mapping on a complete metric space
(X, d) and x is any point in X, the distance between x and the unique fixed point y of T
is bounded above by

δ

1− α
,

where δ = d(x, Tx).

2 The Picard-Lindelöf Theorem

(todo) Give example of x2∂xf + f = 0
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Definition 2.1. An Initial Value Problem P is the data (U, ξ, p, t0), where U is an
open subset of Rn, ξ : U → Rn is a continuous vector field on U , p is a point in U , and
t0 ∈ R.

Definition 2.2. A solution of the initial value problem P = (U, ξ, p, t0) is the data of an
open interval J containing t0 and a differentiable function γ : J → U such that γ(t0) = p
and for all t ∈ J it is the case that γ′(t) = ξ(γ(t)).

Definition 2.3. Given an initial value problem P = (U, ξ, p, t0) and a closed interval I
containing t0, the Picard-Lindelöf Integral Operator TP,I : C(I, U)→ C(I,Rn) is the
map sending γ ∈ C(I, U) to TP,Iγ, where

(TP,Iγ)(s) = p+

∫ s

t0

ξ(γ(t)) dt.

Lemma 2.4. Let P = (U, ξ, p, t0) be an initial value problem. Let J be an open interval
containing t0 and let γ : J → U be a continuous function. The following are equivalent:

1. γ is a solution to the initial value problem P.

2. For every closed subinterval I ⊂ J containing t0, γ|I is a fixed point of the Picard
Lindelöf integral operator TP,I .

Lemma 2.5. Let P = (U, ξ, p, t0) be an initial value problem. Let I be a closed interval
containing t0 and let γ : I → U be a continuous function. The following are equivalent:

1. γ is a fixed point of the Picard-Lindelöf integral operator TP,I .

2. For every open subinterval J ⊂ I containing t0, γ|J is a solution to the initial value
problem P.

Proof. Lemma 2.4 and Lemma 2.5 follow from the fundamental theorem of calculus.

Theorem 2.6 (Picard-Lindelöf). Let P = (U, ξ, p, t0) be a initial value problem, and sup-
pose ξ is locally Lipschitz on U . Then there is some ε > 0 such that there exists a unique
solution γ to the initial value problem P on (t0 − ε, t0 + ε).

Proof. Because ξ is locally Lipschitz, there is a constant L and a closed ball B = BR(p) of
radius R > 0 around p such that for all x, y ∈ B we know

||ξ(x)− ξ(y)|| ≤ L ||x− y|| .

Also, since ξ is continuous and B is compact, we know that ξ is bounded on B: there is
some M such that ||ξ(x)|| ≤M for all x ∈ B. Let a be any positive real number such that
a ≤ R/M and a < 1/L and let I = [t0 − a, t0 + a]. We wish to show that there is a unique
function γ : I → U which is a fixed point of the Picard-Lindelöf integral operator TP,I .
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Using Lemma 2.4 and Lemma 2.5 this will be able to translate this result into an existence
and uniqueness result for solutions to the initial value problem P. Our strategy for showing
that TP,I has a unique fixed point will be to use the Banach fixed point theorem.

Let γ0 : I → Rn be the constant function at p, so γ0(t) = p for all t. Let X be the
closed ball of radius R around γ0; by the definition of the norm on C(I,Rn) the functions
in X are exactly the functions whose image lies in B. Also, because X is a closed subspace
of a Banach space, X is itself complete. First, we claim that TP,I actually maps X to itself.
To see this, note that

||TP,If − γ0||∞ = sup
t∈I

∣∣∣∣∣∣∣∣∫ t

t0

ξ(f(t)) dt

∣∣∣∣∣∣∣∣
≤ sup

t∈I

∫ t

t0

||ξ(f(t))|| dt

≤ sup
t∈I

∫ t

t0

M dt

≤Ma

≤ R

where the third-to-last inequality follows because f ∈ X so we know that f(t) ∈ B for
all t ∈ I so ||ξ(f(t))|| ≤ M by our definition of M . Now we wish to show that TP,I is a
contraction mapping. To see this, let f and g be in X. Then

||TP,If − TP,Ig||∞ = sup
t∈I

∣∣∣∣∣∣∣∣∫ t

t0

ξ(f(t))− ξ(g(t)) dt

∣∣∣∣∣∣∣∣
≤ sup

t∈I

∫ t

t0

||ξ(f(t))− ξ(g(t))|| dt

≤ sup
t∈I

∫ t

t0

L ||f(t)− g(t)|| dt

≤ sup
t∈I

∫ t

t0

L ||f − g||∞ dt

≤ aL ||f − g||∞

which shows that TP,I is a contraction mapping since aL < 1 by our choice of a. The
Banach fixed point theorem, Theorem 1.7, then tells us that TP,I : X → X has a unique
fixed point γ.

Now for any ε < a, letting J = (t0 − ε, t0 + ε), we know that γ|J is a solution to the
initial value problem P by Lemma 2.5. To show that γ|J is the unique solution on J ,
suppose that σ is any solution to the initial value problem P on J . Note that for any
0 < a′ < ε < a, if we let I ′ = [t0 + a′, t0 − a′], then our above argument shows that TP,I′

has a unique fixed point. By Lemma 2.4, σ|I′ is a fixed point of TP,I′ , but we also know
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that γ|I′ is a fixed point of TP,I′ since γ is a fixed point of TP,I and I ′ ⊆ I. The uniqueness
of the fixed point of TP,I′ then implies that γ|I′ = σ|I′ . Since this is true for every a′ < ε
we see that γ|J = σ.

We now wish to show that the solutions to our initial value problem vary continuously
as the initial condition varies.

todo: this lemma actually needs to be used in the proof of Picard-Lindelöf

Lemma 2.7. Let Pp = (U, ξ, p, t0) be an initial value problem. Let M be the maximum
of ||ξ|| on the closed ball of radius R around p. For a < M/R, let δ = R −Ma. Then
if ||q − p|| < δ and γq is a solution to the initial value problem Pq = (U, ξ, q, t0) on J =

(t0 − a, t0 + a), it is the case that γq(t) ∈ BR(p) for all t ∈ J .

Proof. Suppose there is some t ∈ J such that ||γq(t)− p|| > R. Without loss of generality
suppose that t > 0. Then because γq is continuous there is some smallest t′ such that
||γq(t′)− p|| = R but for any t0 ≤ s < t′ it’s the case that ||γq(s)− p|| < R. Then∣∣∣∣γq(t′)− p∣∣∣∣ ≤ ∣∣∣∣γq(t′)− q∣∣∣∣+ ||q − p||

<
∣∣∣∣γq(t′)− γq(t0)

∣∣∣∣+ δ

=

∣∣∣∣∣
∣∣∣∣∣
∫ t′

t0

γ′(t)dt

∣∣∣∣∣
∣∣∣∣∣+ δ

=

∣∣∣∣∣
∣∣∣∣∣
∫ t′

t0

ξ(γ(t))dt

∣∣∣∣∣
∣∣∣∣∣+ δ

≤
∫ t′

t0

Mdt+ δ

= (t′ − t0)M + δ

< aM + δ

< R

where the crucial step here is that since γ(t) is in BR(p) for all t0 ≤ t ≤ t′ we know that
||ξ(γ(t))|| ≤M . We therefore obtain a contradiction, since by our assumption R < R. We
then conclude that ||γq(t)− p|| ≤ R for all t ∈ J .

Proposition 2.8. Let Pp = (U, ξ, p, t0) be an initial value problem where ξ is locally
Lipschitz continuous. There is some a > 0 such that for all ε > 0 there is a δ > 0 such
that for all q with ||q − p|| < δ, if γp and γq are the solutions to the initial value problems
Pp and Pq = (U, ξ, q, t0), respectively, then ||γp − γq||∞ < ε on [t0 − a, t0 + a].

Proof. Let M , R, and L be as in the proof of Theorem 2.6. Choose a > 0 such that
a < M/R and a < 1/L. Then for any ε > 0 choose δ > 0 such that δ < R −Ma and
δ < (1− aL)ε.
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todo: Prove continuous dependence of solution on initial conditions.

2.1 Exercises

Problem 1 Show that the initial value problem

f ′ =
2

3
f1/3

and f(0) = 0 does not have a unique solution. Show that the function x 7→ 2
3x

1/3 is not
locally Lipschitz at x = 0.

Problem 2 Apply the Picard-Lindelöf operator “by hand” to the initial value problem
f ′ = f and f(0) = 1 to compute the Taylor series for et.

3 Lp Spaces

todo: include motivation for PDEs.
todo: include proof that these are NVS.

Theorem 3.1. Lp(Ω) is a Banach space for any measure space Ω and any 1 ≤ p <∞.

Proof. Let fn be a Cauchy sequence in Lp(Ω). Using the Cauchy property (todo: expand?),
choose a subsequence fnk

such that∣∣∣∣fnk+1
− fnk

∣∣∣∣
p
≤ 2−k.

Now let gi be the nonnegative function on Ω such that

gi = |fn1 |+
i−1∑
k=1

|fnk+1
− fnk

|

and let g = limi→∞ gi. Note that

||gi||p ≤ ||fn1 ||p +

i−1∑
k=1

∣∣∣∣fnk+1
− fnk

∣∣∣∣
p

= ||fn1 ||p +

i−1∑
k=1

2−k.

Moreover, gi converges to g monotonically from below, so since x 7→ xp is a monotone
continuous function on R≥0 it’s also the case that gpi converges to gp monotonically from
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below. As a result, the Monotone Convergence Theorem shows that∫
Ω
gp = lim

i→∞

∫
Ω
gpi

= lim
i→∞
||gi||pp

≤ lim
i→∞

(
||fn1 ||p +

i−1∑
k=1

2−k

)p

=
(

1 + ||fn1 ||p
)p

<∞.

Since gp is in L1(Ω), it must be finite almost everywhere, so it must also be the case that
g is finite almost everywhere. Because of this, for almost every x ∈ Ω we know that

∞∑
i=1

fnk+1
(x)− fnk

(x)

converges absolutely, since

∞∑
i=1

|fnk+1
(x)− fnk

(x)| = g(x)− |fn1(x)| <∞.

As a result, we can define a function f on Ω almost everywhere as

f = fn1 +
∞∑
i=0

(
fnk+1

− fnk

)
.

Since |f | ≤ g, we know |f |p ≤ gp, so since g ∈ L1(Ω) we know that |f |p ∈ L1(Ω), which
implies that f ∈ Lp(Ω). We now want to show that our original sequence converges to f .
Note that for any k,

||f − fnk
||p =

∣∣∣∣∣
∣∣∣∣∣
∞∑
i=k

fni+1 − fni

∣∣∣∣∣
∣∣∣∣∣
p

≤
∞∑
i=k

2−i

= 21−k.

so ||f − fnk
||p → 0 as k → ∞. Since our original sequence fn was Cauchy and since

a subsequence fnk
converges to f , we can conclude that fn also converges to f (todo:

expand?).
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4 Hilbert Spaces

Definition 4.1. An Inner Product Space is a pair (V , 〈−,−〉) where V is a vector
space over a field F which is either R or C and the inner product 〈−,−〉 : V × V → F is
a function satisfying the following three conditions:

1. 〈v, v〉 ∈ R≥0 and 〈v, v〉 = 0 if and only if v = 0.

2. 〈v, w + λu〉 = 〈v, w〉+ λ 〈v, u〉 for all λ ∈ K.

3. 〈v, w〉 = 〈w, v〉.

Here z is the complex conjugate of z. Note that when F = R, the third axiom of an
inner product space just says that 〈v, w〉 = 〈w, v〉, so in this situation the inner product
is symmetric. To fix notation, given an inner product space (V, 〈−,−〉) we will write
||v|| =

√
〈v, v〉. The notation is suggestive: we will see in Proposition 4.3 that this function

is indeed a norm.
todo: give examples

Proposition 4.2 (Cauchy-Schwartz Inequality).

|〈v, w〉| ≤ ||v|| ||w||

Proof. For any λ ∈ K, note that

0 ≤ 〈v + λw, v + λw〉
= 〈v, v〉+ 〈λw, v〉+ 〈v, λw〉+ 〈λw, λw〉
= ||v||2 + λ 〈v, w〉+ λ 〈v, w〉+ |λ|2 ||w||2

= ||v||2 + 2 Re(λ 〈v, w〉) + |λ|2 ||w||2 .

The smaller the term on the right is, the more interesting of a bound this gives us. The
expression we want to minimize is a quadratic equation in λ, and the standard formula for
the minimum gives the value

λ =
−〈v, w〉
||w||2

=
−〈w, v〉
||w||2

.

For this value of λ, we see that

0 ≤ ||v||2 − 2
|〈v, w〉|2

||w||2
+
|〈v, w〉|2

||w||4
||w||2

= ||v||2 − |〈v, w〉|
2

||w||2
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so
|〈v, w〉|2 ≤ ||v||2 ||w||2

so
|〈v, w〉| ≤ ||v|| ||w||

since both sides are positive.

todo: relate this to Hölder’s inequality

Proposition 4.3. Given an inner product space (V, 〈−,−〉), if we define ||v|| =
√
〈v, v〉

as above, then (V, ||·||) is a normed vector space.

Proof. First note that ||v|| = 0 if and only if 〈v, v〉 = 0 if and only if v = 0. This verifies
the first axiom of a normed vector space. Also note that

||λv|| =
√
〈λv, λv〉

=

√
|λ|2 〈v, v〉

= |λ| ||v||

This verifies the second axiom. The last thing to show is the triangle inequality ||v + w|| ≤
||v||+ ||w||. It suffices to show the inequality after squaring both sides:

||v + w||2 = 〈v + w, v + w〉
= 〈v, v〉+ 2 Re(〈v, w〉) + 〈v, w〉
≤ ||v||2 + 2 |〈v, w〉|+ ||w||2

≤ ||v||2 + 2 ||v|| ||w||+ ||w||2

= (||v||+ ||w||)2

where the first inequality here is simply the fact that Re z ≤ |z| for any z ∈ C and the
second inequality is the Cauchy-Schwartz inequality, Proposition 4.2.

Definition 4.4. A Hilbert Space is an inner product space (V, 〈−,−〉) such that the
associated normed vector space is a Banach space.

todo: give examples

Proposition 4.5 (Parallelogram Law). If (V, 〈−,−〉) is an inner product space, then

||x+ y||2 + ||x− y||2 = 2 ||x||2 + 2 ||y||2
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Proof. Since V is an inner product space, we can rewrite the norm in terms of the inner
product:

||x+ y||2 + ||x− y||2 = 〈x+ y, x+ y〉+ 〈x− y, x− y〉
= ||x||2 + 2 Re(〈x, y〉) + ||y||2 + ||x||2 − 2 Re(〈x, y〉) + ||y||2

= 2 ||x||2 + 2 ||y||2

Remark 4.6. Note that even though the statement of Proposition 4.5 can be phrased purely
in terms of the norm on V , it is false for a general normed vector space. For example, take
R2 with the `1 norm.

Proposition 4.7. If K is a closed and convex subset of a Hilbert space H, then for any
point x ∈ H there exists a unique point y ∈ K that attains the minimum distance between
x and a point in K.

Proof. Like in Theorem 1.7, the uniqueness part of the statement does not require the
assumption of completeness on the underlying vector space; it holds for an arbitrary inner
product space as follows. Let D be the distance between K and x. In other words,

D = inf
y∈K

d(x, y).

Suppose that y1 and y2 both realize this infimum, so d(y1, x) = d(y2, x) = D. Then by the
parallelogram law Proposition 4.5 applied to (y1 − x) and (y2 − x),

||y1 − y2||2 = 2 ||y1 − x||2 + 2 ||y2 − x||2 − ||y1 + y2 − 2x||2

= 4D2 − 4

∣∣∣∣∣∣∣∣y1 + y2

2
− x
∣∣∣∣∣∣∣∣2

≤ 4D2 − 4D2

= 0

Here we’ve used the fact that K is convex, so (y1 + y2)/2 is in K, so by definition the
definition of D its distance to x is at least D. Since ||y1 − y2|| is always in R≥0 we see that
||y1 − y2|| = 0, so y1 = y2. This proves uniqueness.

To prove the existence of a distance-minimizer we use a similar trick: let yn ∈ K be
some point such that d(yn, x) ≤ D + 1/n. Since the distance function is continuous on H,
if we can show that yn converges to some y ∈ H, we’ll be done: because yn ∈ K and K is
closed we’ll know that y ∈ K. Moreover

d(y, x) = lim
n→∞

d(yn, x) = D
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so y will be our desired distance-minimizer. To show that yn converges to some y ∈ H
we’ll use the parallelogram law Proposition 4.5 to argue that the sequence yn is Cauchy
and then conclude by the completeness of H.

Explicitly, applying Proposition 4.5 to (yn − x) and (ym − x) we get

||yn − ym||2 = 2 ||yn − x||2 + 2 ||ym − x||2 − ||yn + ym − 2x||2

= 2

(
D +

1

n

)2

+ 2

(
D +

1

m

)2

− 4

∣∣∣∣∣∣∣∣yn + ym
2

− x
∣∣∣∣∣∣∣∣2

≤ 2D2 +
4D

n
+

2

n2
+ 2D2 +

4D

m
+

2

m2
− 4D2

=
4D

n
+

2

n2
+

4D

m
+

2

m2
.

Since this goes to zero as n,m go to∞ we see that the sequence yn is Cauchy, as desired.

Definition 4.8. If H is a Hilbert space and K is a closed convex subset of H, the Pro-
jection Operator PK : H → K is the map that sends x ∈ H to the point y = PK(x) ∈ K
that minimizes the distance to x.

Remark 4.9. Note that the function PK is well defined by Proposition 4.7.

The case when K is a closed linear subspace of H is particularly interesting.

Proposition 4.10. If K is a closed linear subspace of H and x is some vector in H, the
following are equivalent for all y ∈ K

1. y = PK(x).

2. 〈y − x, u〉 = 0 for all u ∈ K.

Proof. First we show that 1 implies 2, so suppose that y = PK(x). Given any u ∈ K,
consider the function f : R→ R≥0 such that

f(λ) = ||y + λu− x||2

= ||y − x||2 + 2λRe(〈y − x, u〉) + λ2 ||u||2 .

Evidently, f is a quadratic function in λ. Furthermore, since u ∈ K and since K is a
linear subspace of H, we know that y + λu ∈ K for all λ. By our choice of y, this implies
that f(λ) ≥ f(0) for all λ–so f attains its minimum at λ = 0. A quadratic function
f(λ) = aλ2 + bλ+ c attains its minimum at λ = 0 exactly when b = 0, so we conclude that
Re(〈y − x〉 , u) = 0. If F = R, we’re done. If F = C note that

〈y − x, u〉 = Re(〈y − x, u〉) + i Im(〈y − x, u〉)
= Re(〈y − x, u〉) + iRe(〈y − x,−iu〉)
= 0
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where the last equality follows because both u and iu are in K.
To show that 2 implies 1, suppose that y ∈ K is such that 〈y − x, u〉 = 0 for all u ∈ K.

Then for any other y′ ∈ K we have∣∣∣∣y′ − x∣∣∣∣2 =
〈
y′ − x, y′ − x

〉
=
〈
(y′ − y) + (y − x), (y′ − y) + (y − x)

〉
=
∣∣∣∣y′ − y∣∣∣∣2 +

〈
y′ − y, y − x

〉
+
〈
y − x, y′ − y

〉
+ ||y − x||2

=
∣∣∣∣y′ − y∣∣∣∣2 + ||y − x||2

≥ ||y − x||2 .

Here we’ve used the fact that y′ − y ∈ K, so 〈y − x, y′ − y〉 = 〈y′ − y, y − x〉 = 0. This
shows that y is the closest to x among all of the points of K, so y = PK(x) by definition.

Corollary 4.11. If K is a closed linear subspace of H then PK is a continuous linear
operator.

Proof. To see that PK is linear, note that by the implication 1 implies 2 of Proposition 4.10
we know that for any u ∈ K

〈PK(x) + λPK(y)− x− λy, u〉 = 〈PK(x)− x, u〉+ λ 〈PK(y)− y, u〉
= 0

so by the implication 2 implies 1 of Proposition 4.10 we know that

PK(x+ λy) = PK(x) + λPK(y).

This proves that PK is linear. To show that PK is continuous, note that

||x||2 = 〈x, x〉
= 〈PK(x) + (x− PK(x)), PK(x) + (x− PK(x))〉
= ||PK(x)||2 + 2 Re(〈PK(x), x− PK(x)〉) ||PK(x)− x||2

= ||PK(x)||2 + ||PK(x)− x||2

where we have used Proposition 4.10 to say that 〈PK(x), x− PK(x)〉 = 0. This implies
that ||PK(x)|| ≤ ||x||, so PK is continuous.

todo: I have not talked about continuous linear operators yet.
todo: Riesz representation theorem.
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5 Sobolev Spaces

todo: example of screening equation
todo: definition of weak derivative
todo: weak formulation of PDE
todo: Lax-Milgram theorem?
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