NICK‘S THESIS

1. DEFORMATION TO THE NORMAL CONE IN FORMAL GEOMETRY.

1.1. Construction of the deformation. Let f : X — ) be inf-schematic (technical condition en-
suring that IndCoh-pushforward exists) nil-isomorphism of laft-def prestacks. Recall that we have
T*(X) € Pro(QCoh(X)™)/I5.

By Serre duality and convergence of IndCoh(&X') we get

(1.1) (Pro(QCoh(X)™)/if)°? = IndCoh(X).

Definition 1.1. The object corresponding to 7 (X) under the equivalence (1.1) is the tangent complex
T(X).
We will denote by T(X'/Y) the fiber of the map T'(X) — f'T(). We will call T(X/Y)[1] the normal

bundle to X in ).
We also introduce the following analogs of total spaces of tangent bundles in formal geometry:

Definition 1.2. (1) Vectx(T(X)) := Maps(kle]/e?, X)%,
(2) VeCtX(T(X/y)) = (Maps(k[e]/eQ, X) XMaps(k[e]/e2,y) y)//%y
(3) Vectx(T(X/Y)[1])) := (Maps(k[a]/a®, X) X Maps(k[a]/a2,) V) ¥, Where a has homological degree
1.

laft—def

XAl jyxal o such that

The goal of this subsection is to construct Vscaied € PreSt

(1) Vscaled = Y % A' is inf-schematic nil-isomorphism,
(2) the fiber of X x A" = YV,catea over 0 # X € A’ coincides with f,
(3) the fiber of X x A" = YVscareq over 0 = X € A" is the zero section.
We will follow [GRII]. The idea is to construct Al-family of groupoids R, .q € PreStiaft—def
deforming the groupoid X xy X —=< X to Vectx(T(X/Y))) —= X.

The construction is given by

(1.2) R eateq = (WeilZire® (X x Bifurc®) XweiBjfore® (xpituree) (V) X AY) X uats

for some A'-family of groupoids Bifurc® € (AffSch®)°P.
Concretely, for A € A' we have

(13) (R;caled))\ = (Ma’ps((BifurC.))\a X) XIVIaps((Bifurc')A,y) y)Q
From this formula we see that Bifurc® € (Sch*®)°P should be

Spec(k[u]) %& Spec(klu, €]/(u — €)(u + ¢€)).

1.2. Digression: (lax)-equivariance. It turns out that YVscaiea carries a lax-equivariant structure
with respect to the action of the monoid A' (via multiplication). In this subsection we discuss gener-
alities on (lax)-equivariance.

Let G be a monoid, C1,C> be categories with an action of G. Suppose we have ¢ : C1 — Cz. In
this context we have a familiar notion of lax-equivariance:

Definition 1.3. Right-lax (left-lax) equivariant structure on ® w.r.t. G is a homotopy coherent system
of assignments
go® > ®og (Pog—god)
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compatibe with monoid structure.
We say that @ is strictly equivariant if these maps are equivalences.

Let now G be a monoid prestack. let C; and C2 be functors
AffSch®® — Cat
with a pointwise action of G. Suppose we have a natural transformation ® : C; — Cs.

Definition 1.4. Datum of right-lax (left-lax, strict) equivariance on ® w.r.t. G is a compatible system
of right-lax (left-lax, strict) equivariance structures on ®(S) : C1(S) — C2(S) for S € AffSch.

Remark 1.5. When C; = X is a prestack we can view ® as C2(X), where we view Cy as a functor
Cs : PreSt°® — Cat via right Kan extension along AffSch®® — PreSt°P.

We denote the category of right-lax (left-lax, strict-) equivariant ® by Co(X)%risht-tax (Cy(X)Itett-lax
Ca (X)gl"x ) .

Example. C; = C ® QCoh(—) with the trivial action of G. In the case when C = Vect this is the
familiar notion of equivariant quasi-coherent sheaf.

Example. C; = C ® IndCoh(—) with the trivial action of G.

Example. C2 = PreSt/, with the trivial action of G. Then for Y € PreSt the element of Cg()i)gr‘%htflax
is the data of a prestack X — Y plus a map Xpr — Xact and higher compatibilities, where the source
and the target are defined as

and

AL
Lemma 1.6. The groupoid Bifurc® upgrades to an object Bifurc® € (AffSch’, s> )P,

/Al
Corollary 1.7. The prestack Yscaled € PreStl;C;ie/ngl upgrades to an object of
laft—de il—is 1
((PreStxitAl//};xM)mz 850 Mete-tax |

1.3. The special case. From now on let X be a smooth proper curve. In this subsection we specialize
the above discussion to the following situation .Let X = S(Z) x Ran for a sectionally laft prestack
Z — Xqr. Here S(Z)(T) := Mapsy, . (T x Xar, Z) for any T € AffSch.

As a result of the previous subsections we get a functor

nil—iso

nil—iso
DefNorm N (PreStmft_defS(Z>XRM/)/RM — ((PreStlaft_defs(Z) xRanxAl/)/RanXAl)
sending S(Z) x Ran — Y t0 Vscaled-
Post-composing DefNorm with the functor

((PreStlaft—defgélZ_)i:?ganXAI/)/RanxAl )All‘jft’l‘”‘ — EndIndCoh(RanxAl)(IndCOh(S(Z) x Ran X Al))A%C&’I‘“

1
Aleft-lax

sending f : S(Z) x Ran x A' = W to f'fIndCeh we get

N : (PTEStlaj't—defgé;i;%an/)/Ran — Endpuacon(ranxal)(IndCoh(S(Z) x Ran x Al))Alle“-laX.
The category IndCoh(A') is dualizable, and therefore
IndCoh(S(Z) x Ran x A") 2 IndCoh(S(Z) x Ran) ® IndCoh(A") 2 IndCoh(S(Z) x Ran) ® QCoh(A"),
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and
IndCoh(Ran x A") 2 IndCoh(Ran) ® IndCoh(A") 2 IndCoh(Ran) @ QCoh(A"),
Lemma 1.8. For A, B symmetric monoidal DG categories, M € B-mod, we have
Ends otimesa(M ® A) =2 Endp(M) ® A.

Then we can rewrite

N+ (PreStiagi—des a7 han)/Ran — (Endiacon(ran) (INdCoh(S(Z) x Ran)) ® QUoh(Al)) et-tax
1.4. Digression: A'-equivariance and filtrations. Let C' be a DG category. Let CT!
Maps(Z, C) be the category of filtered objects. Here Z is viewed as an ordered set and hence a category.
Proposition 1.9. There exists an equivalence

C™ = (C @ QCoh(A))%™,

where the action of Gy, on Al is via multiplication.

Proof. (Sketch) Reduce to the case C' = Vect. Then the functor QCoh(A")®" — CF! is given by
F = (n— DAY, F(n-{0}))%m). O

Under this identification we have

C ——C

colim
/Zrﬁﬁ (1 ®i1‘>ooblvT

]

Maps(Z,C) —— CT™ —— (C ® QCoh(A'))®m

lgr Jgr lld ®ig

c? = cor = Ccbm,

Recall that we consider A' as a monoid under multiplication.

Lemma 1.10. The forgetful functor
(C'® QCoh(A"))Mlns — (C ® QCoh(A")*"
is fully faithful and its essential image identifies with CT'"=° ¢ CFH,
Lemma 1.11. The forgetful functor
CHletitax —y CCm

is fully faithful and its essential image identifies with C¥=° C C®".
Remark 1.12. On CFih20 « O the functor gr is conservative.

1.5. The special case: redux. Using the results of the previous subsection we rewrite the functor
N as

N: (PreStlafi—dCfgé;i;?%an/)/Ran — (Endinacon(ran) (IndCoh(S(Z) x Ran)))F"=°.
Using Lemma 1.8 again we see that the target

(Endinacon(ran) (IndCoh(S(Z) x Ran)))F"=° = (End(IndCoh(S(Z))) ® D(Ran))"™"=°.
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Summarizing, we get
(1.4)

End(IndCoh(S(2))) ® D(Ran) ——<"%"  End(IndCoh(S(Z)))

M::PW) Obl F“T obl F“T
v v

(PreStlaftfdefgélZ_)i:?{an/)/Ran —~ 4 (End(IndCoh(S(2))) ® D(Ran))¥=0 Te.Ray (End(IndCoh(S(Z))))Fi-=0

[ =

Te Ran

End(IndCoh(S(2))) ® D(Ran) ——————— End(IndCoh(S(Z2)))

TensT TensT

IndCoh(S(Z)) ® D(Ran) leRan IndCoh(5(2))

Sym(T(S(Z)xRan/—))

2. STATEMENT OF THE MAIN RESULT.

Let Z € PreSt,x,,, be a sectionally laft prestack. Along with horizontal sections S(Z) we have the

puntured sections prestack living over Ran""":

Definition 2.1. Informally, the fiber of puntured sections prestack fq (Z) Rapuntl OVEr T1,..,Tn €
Ran"™(C) is given by
S (Z){x1,~»~,a:n} = S(Z|{w1,m,xn})~

Remark 2.2. We have a natural map S(Z) x Ran"™"! -8 (Z) ganuntt given fiberwise by restriction.
The prestack § (Z) ganuntt is not laft so we introduce a laft prestack

Definition 2.3. § (Z) o muntt i= (5 (Z) Ranunt1)

A
S(Z)x Ra.ng(“tl :
By construction the morphism

P S(Z) x Rani™ = (Z)hpunt

untl!

is nil-isomorphism, hence pseudo-proper. Therefore r admits a left adjoint """, satisfying projec-

tion formula.

Definition 2.4. We define the infinitesimal Hecke monad
H™(Z)uner = (r"™) (7). € Alg(Endppacon(ganun (IndCoh(S(Z) x Ran™™))).

untl

Remark 2.5. The exact same constructions make sense for Ran
corresponding infinitesimal monad by H™(Z).

replaces by Ran. Denote the

For any prestack ) consider py qr : V — Yag. This is nil-iso, so (py.4r)’ admits a left adjoint
(py,dr)« satisfying projectioon formula.

Definition 2.6. Denote the resulting monad (py,4r)' © (py.ar)« by Diffy.
Remark 2.7. We have Diffy -mod(IndCoh(Y))) = D(Y).
We also have

5(Z) x Rani™ S(Z)ar x Ran

Ps(z),dr>x1d
r“k) /

S(Z) e -

and therefore we have a map of monads

(2.1) Hinf(Z)untl — DiHS<Z> ‘ZwRang(ntl.
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Applying (symmetric monoidal!) T', p,,untt We get a map
(2.2) L. ganunt (H™(Z)unt1) — Diffs(z) € Alg(End(IndCoh(S(2)))).
Theorem 2.1. If Z € PreSt,x,,, is sectionally laft, then (2.2) is an isomoprhism.
This Theorem is the main goal of the talk. We will follow the proof in [R].
Remark 2.8. It suffices to prove the isomorphism between the underlying objects in
End(IndCoh(S(Z)).
3. PROOF OF THE MAIN RESULT.

3.1. Step 1: Reduction to the statement about tangent complexes. We want to employ results
from the first section, therefore we reduce the statement to the non-unital one.
Recall that ¢ : Ran — Ran""" is universally homologically cofinal, hence

. panuntt 2 e pan 00
Note that (Id ®¢')(H™ (X )unu) = H™(Z). Hence we need to show that
Ce,ran(H™ (Z)) — Diffs(z)
arizing by adjunction from
(3.1) H™(Z) — Diffs(z) Rwran

is an isomorphism.
Recall the functor

M := (=)' (—)indCeh (PreStlaft,defgélz_)ij?%m/)/Ran — End(IndCoh(S(Z))) ® D(Ran).
By definition the map (3.1) coincides with
M(S (Z)kan = S(Z)ar x Ran).
Chasing (1.4) we see that it suffices to show that
N((S (Z)Ran — S(Z)ar x Ran)
is an isomorphism. Or, equivalently, that
T, an © N((S (Z)fan = S(Z)ar x Ran)

is an isomorphism. Since the filtrations are non-negative, the functors gr in (1.4) are conservative.
Therefore it suffices to show that

(3.2) Lo ftan (Sym(T(S(Z) x Ran/=)))(S (Z)}an — S(Z)ar x Ran)

is an isomorphism in IndCoh(S(Z2)).
However, by universal homological cofinality this is equivalent to

(3.3) T, o (Sym(T(S(Z) x Ran"™ /=)))(8 (Z) ot = S(Z)ar x Ran™)

being an isomorphism. But since I, g,,unt1 is symmetric monoidal it suffices to show that

(84) T\ ot (T(S(Z2)x Ran™ | § (2)fponit)) = Do amonit (T(S(Z2) x Ran™ /S(Z) arx Ran™).
So since T(S(Z)ar x Ran"™") = 0 we reduced the main theorem to the following statement:

Theorem 3.2. Let Z € PreSt,x,, be sectionally laft. Then

T, gapunit © (P (T(S (Z) yamun)) = 0.
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3.3. Step 2: reduction of theorem 3.2 to statements about ©(Z). Recall the definition of the
antecedent of the tangent complex:

Definition 3.1. For z: S — S(Z), S € AffSch the sheaves
DY o Oblv*™*° o evi T* Z € IndCoh(S x Xar),
where ev, : S X Xqr — Z is the section corresponding to z, assemble to ©(Z) € IndCoh(S(Z) x Xa4r).
Here is the main property of this sheaf that we are going to use:

Proposition 3.2. T(S(Z)) = (id xpx,,; )"0 (Z) =~ (id XDPX 4r,«)O(Z), where px,, + Xar — pt
and px : X — pt.

The proof of Theorem 3.2 will consist of the following two assertions:
Proposition 3.3. Let Z € PreSt,x,,, be sectionally laft. Then
L. ganunet (T(S(Z) x Ran"™'/ S (Z) 1)) € IndCoh(S(Z)) ® D(Ran™")
lies in the essential image of id ®(vx )1, where (1x)1 : D(X) — D(Ran™").
Proposition 3.4. Under the isomorphism in Proposition 3.2 the map
id®(ex) (T(S(Z) x Ran™ ) § (Z)hypeent)) — id ®@(1x) (T(S(Z) x Ran"™)) = T(S(Z)) K wx

identifies with
8(2) = (id®(px)") o (1d ®px 4r,.)O(2)
given by adjunction.

We now deduce the proof of Theorem 3.2 from these two propositions. Consider the diagram

(I ET, gy (T(S(Z) X Ran"™ | § (Z) 7y mn) (1T, gy )(T(S(Z) % Ran"™")

ETPI‘ .3.3 T
(1A &T, popunt) © ([d @(1x) ) (T(S(Z) x Ran™ "/ § (Z)py, unt) —— (Id @, gopuna) 0 (Id @(ex)' ) (T(S(Z) x Ran"™)

By Proposition 3.4the lower composition identifies with
E?&E)G)E)FC,X)@(Z) — (Id@Te.x)o(Id ®(px ) )o(Id @ (px )ar.«)O(Z) — (1d ®I', papuna )o(Id (P ramunt))o(Id @(px )ar.»)O(Z).
But counit of the adjoint pair (', gypunt), (PRranuwnn)') is identity, hence it suffices to show that the
comoposition of the last map of (3.5) with
(Id®T', ganuna) o (Id @Pranwit)) © (1A @(px )ar,«)O(Z) — (1d®(px)ar.«)O(Z)
is an isomorphism. This composition identifies with
(1d @(px)ar,-)O(Z) = (1A @(px)ar,«) o (A @(Pgapunt)) 0 (1A @(px )ar,)O(Z) = (1A @(px )ar.)O(Z),

which is isomorphism by adjunction axioms. Hence we proved Theorem 3.2 and therefore Theorem 2.1.
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