
NICK‘S THESIS

1. Deformation to the normal cone in formal geometry.

1.1. Construction of the deformation. Let f : X → Y be inf-schematic (technical condition en-
suring that IndCoh-pushforward exists) nil-isomorphism of laft-def prestacks. Recall that we have

T ∗(X ) ∈ Pro(QCoh(X )−)fakelaft .

By Serre duality and convergence of IndCoh(X ) we get

(1.1) (Pro(QCoh(X )−)fakelaft )op ∼= IndCoh(X ).

Definition 1.1. The object corresponding to T ∗(X ) under the equivalence (1.1) is the tangent complex
T (X ).

We will denote by T (X/Y) the fiber of the map T (X )→ f !T (Y). We will call T (X/Y)[1] the normal
bundle to X in Y.

We also introduce the following analogs of total spaces of tangent bundles in formal geometry:

Definition 1.2. (1) VectX (T (X )) := Maps(k[ε]/ε2,X )∧X ,
(2) VectX (T (X/Y)) := (Maps(k[ε]/ε2,X )×Maps(k[ε]/ε2,Y) Y)∧X ,

(3) VectX (T (X/Y)[1])) := (Maps(k[a]/a2,X )×Maps(k[a]/a2,Y)Y)∧X , where a has homological degree
1.

The goal of this subsection is to construct Yscaled ∈ PreStlaft−defX×A1//Y×A1 , such that

(1) Yscaled → Y × A1 is inf-schematic nil-isomorphism,
(2) the fiber of X × A1 → Yscaled over 0 6= λ ∈ A1 coincides with f ,
(3) the fiber of X × A1 → Yscaled over 0 = λ ∈ A1 is the zero section.

We will follow [GRII]. The idea is to construct A1-family of groupoids R•scaled ∈ PreStlaft−def

deforming the groupoid X ×Y X X to VectX (T (X/Y))) X .
The construction is given by

(1.2) R•scaled = (WeilBifurc•

A1 (X × Bifurc•)×WeilBifurc•
A1

(Y×Bifurc•) (Y × A1))∧X×A1 ,

for some A1-family of groupoids Bifurc• ∈ (AffSchcl)op.
Concretely, for λ ∈ A1 we have

(1.3) (R•scaled)λ = (Maps((Bifurc•)λ,X )×Maps((Bifurc•)λ,Y) Y)∧X .

From this formula we see that Bifurc• ∈ (Schcl,aff)op should be

Spec(k[u]) Spec(k[u, ε]/(u− ε)(u+ ε)).
ε7→u

ε7→−u

1.2. Digression: (lax)-equivariance. It turns out that Yscaled carries a lax-equivariant structure
with respect to the action of the monoid A1 (via multiplication). In this subsection we discuss gener-
alities on (lax)-equivariance.

Let G be a monoid, C1, C2 be categories with an action of G. Suppose we have φ : C1 → C2. In
this context we have a familiar notion of lax-equivariance:

Definition 1.3. Right-lax (left-lax) equivariant structure on Φ w.r.t. G is a homotopy coherent system
of assignments

g ◦ Φ→ Φ ◦ g (Φ ◦ g → g ◦ Φ)
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compatibe with monoid structure.
We say that Φ is strictly equivariant if these maps are equivalences.

Let now G be a monoid prestack. let C1 and C2 be functors

AffSchop → Cat

with a pointwise action of G. Suppose we have a natural transformation Φ : C1 → C2.

Definition 1.4. Datum of right-lax (left-lax, strict) equivariance on Φ w.r.t. G is a compatible system
of right-lax (left-lax, strict) equivariance structures on Φ(S) : C1(S)→ C2(S) for S ∈ AffSch.

Remark 1.5. When C1 = X is a prestack we can view Φ as C2(X ), where we view C2 as a functor
C2 : PreStop → Cat via right Kan extension along AffSchop ↪→ PreStop.

We denote the category of right-lax (left-lax, strict-) equivariant Φ by C2(X )Gright-lax (C2(X )Gleft-lax ,
C2(X )Glax).

Example. C2 = C ⊗ QCoh(−) with the trivial action of G. In the case when C = Vect this is the
familiar notion of equivariant quasi-coherent sheaf.

Example. C2 = C ⊗ IndCoh(−) with the trivial action of G.

Example. C2 = PreSt/− with the trivial action of G. Then for Y ∈ PreSt the element of C2(Y)Gright-lax

is the data of a prestack X → Y plus a map Xpr → Xact and higher compatibilities, where the source
and the target are defined as

Xpr X

G × Y Ypr

and
Xact X

G × Y Y.
act

Lemma 1.6. The groupoid Bifurc• upgrades to an object Bifurc• ∈ (AffSch
A1
right-lax

/A1 )op.

Corollary 1.7. The prestack Yscaled ∈ PreStlaft−defX×A1//Y×A1 upgrades to an object of

((PreStlaft−defX×A1//Y×A1)nil−iso)A
1
left-lax .

1.3. The special case. From now on let X be a smooth proper curve. In this subsection we specialize
the above discussion to the following situation .Let X = S(Z) × Ran for a sectionally laft prestack
Z → XdR. Here S(Z)(T ) := MapsXdR(T ×XdR, Z) for any T ∈ AffSch.

As a result of the previous subsections we get a functor

DefNorm : (PreStlaft−def
nil−iso
S(Z)×Ran/)/Ran → ((PreStlaft−def

nil−iso
S(Z)×Ran×A1/)/Ran×A1)A

1
left-lax

sending S(Z)×Ran→ Y to Yscaled.
Post-composing DefNorm with the functor

((PreStlaft−def
nil−iso
S(Z)×Ran×A1/)/Ran×A1)A

1
left-lax → EndIndCoh(Ran×A1)(IndCoh(S(Z)×Ran×A1))A

1
left-lax

sending f : S(Z)×Ran× A1 →W to f !f IndCoh
∗ , we get

N : (PreStlaft−def
nil−iso
S(Z)×Ran/)/Ran → EndIndCoh(Ran×A1)(IndCoh(S(Z)×Ran× A1))A

1
left-lax .

The category IndCoh(A1) is dualizable, and therefore

IndCoh(S(Z)×Ran×A1) ∼= IndCoh(S(Z)×Ran)⊗ IndCoh(A1) ∼= IndCoh(S(Z)×Ran)⊗QCoh(A1),
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and

IndCoh(Ran× A1) ∼= IndCoh(Ran)⊗ IndCoh(A1) ∼= IndCoh(Ran)⊗QCoh(A1),

Lemma 1.8. For A,B symmetric monoidal DG categories, M ∈ B -mod, we have

EndB otimesA(M ⊗A) ∼= EndB(M)⊗A.

Then we can rewrite

N : (PreStlaft−def
nil−iso
S(Z)×Ran/)/Ran → (EndIndCoh(Ran)(IndCoh(S(Z)×Ran))⊗QCoh(A1))A

1
left-lax .

1.4. Digression: A1-equivariance and filtrations. Let C be a DG category. Let CFil :=
Maps(Z, C) be the category of filtered objects. Here Z is viewed as an ordered set and hence a category.

Proposition 1.9. There exists an equivalence

CFil ∼= (C ⊗QCoh(A1))Gm ,

where the action of Gm on A1 is via multiplication.

Proof. (Sketch) Reduce to the case C = Vect. Then the functor QCoh(A1)Gm → CFil is given by
F 7→ (n 7→ Γ(A1,F(n · {0}))Gm). �

Under this identification we have

C C

Maps(Z, C) CFil (C ⊗QCoh(A1))Gm

CZ Cgr CGm .

∼=

colimZ

gr

=:

OblvFil

gr

∼=

Id⊗i∗0

(Id⊗i∗1)◦Oblv

=: ∼=

Recall that we consider A1 as a monoid under multiplication.

Lemma 1.10. The forgetful functor

(C ⊗QCoh(A1))A
1
left-lax → (C ⊗QCoh(A1))Gm

is fully faithful and its essential image identifies with CFil,≥0 ⊂ CFil.

Lemma 1.11. The forgetful functor

CA1
left-lax → CGm

is fully faithful and its essential image identifies with Cgr,≥0 ⊂ Cgr.

Remark 1.12. On CFil,≥0 ⊂ CFil the functor gr is conservative.

1.5. The special case: redux. Using the results of the previous subsection we rewrite the functor
N as

N : (PreStlaft−def
nil−iso
S(Z)×Ran/)/Ran → (EndIndCoh(Ran)(IndCoh(S(Z)×Ran)))Fil,≥0.

Using Lemma 1.8 again we see that the target

(EndIndCoh(Ran)(IndCoh(S(Z)×Ran)))Fil,≥0 ∼= (End(IndCoh(S(Z)))⊗D(Ran))Fil,≥0.
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Summarizing, we get
(1.4)

End(IndCoh(S(Z)))⊗D(Ran) End(IndCoh(S(Z)))

(PreStlaft−def
nil−iso
S(Z)×Ran/)/Ran (End(IndCoh(S(Z)))⊗D(Ran))Fil,≥0 (End(IndCoh(S(Z))))Fil,≥0

End(IndCoh(S(Z)))⊗D(Ran) End(IndCoh(S(Z)))

IndCoh(S(Z))⊗D(Ran) IndCoh(S(Z))

Γc,Ran

M :=(−)!(−)IndCoh
∗

Sym(T (S(Z)×Ran/−))

N

OblvFil

gr

Γc,Ran

gr

OblvFil

Γc,Ran

Tens

Γc,Ran

Tens

2. Statement of the main result.

Let Z ∈ PreSt/XdR be a sectionally laft prestack. Along with horizontal sections S(Z) we have the

puntured sections prestack living over Ranuntl:

Definition 2.1. Informally, the fiber of puntured sections prestack
◦
S (Z)Ranuntl over x1, ..., xn ∈

Ranuntl(C) is given by
◦
S (Z){x1,...,xn} = S(Z|{x1,...,xn}).

Remark 2.2. We have a natural map S(Z)×Ranuntl →
◦
S (Z)Ranuntl given fiberwise by restriction.

The prestack
◦
S (Z)Ranuntl is not laft so we introduce a laft prestack

Definition 2.3.
◦
S (Z)∧Ranuntl := (

◦
S (Z)Ranuntl)∧S(Z)×Ranuntl

X
.

By construction the morphism

runtl : S(Z)×Ranuntl
X →

◦
S (Z)∧Ranuntl

is nil-isomorphism, hence pseudo-proper. Therefore runtl! admits a left adjoint runtl
∗ satisfying projec-

tion formula.

Definition 2.4. We define the infinitesimal Hecke monad

Hinf(Z)untl := (runtl)!(runtl)∗ ∈ Alg(EndIndCoh(Ranuntl)(IndCoh(S(Z)×Ranuntl))).

Remark 2.5. The exact same constructions make sense for Ranuntl replaces by Ran. Denote the
corresponding infinitesimal monad by Hinf(Z).

For any prestack Y consider pY,dR : Y → YdR. This is nil-iso, so (pY,dR)! admits a left adjoint
(pY,dR)∗ satisfying projectioon formula.

Definition 2.6. Denote the resulting monad (pY,dR)! ◦ (pY,dR)∗ by DiffY .

Remark 2.7. We have DiffY -mod(IndCoh(Y)) ∼= D(Y).

We also have

S(Z)×Ranuntl
X S(Z)dR ×Ranuntl

X

◦
S (Z)∧Ranuntl .

runtl

pS(Z),dR×Id

and therefore we have a map of monads

(2.1) Hinf(Z)untl → DiffS(Z) �ωRanuntl
X

.
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Applying (symmetric monoidal!) Γc,Ranuntl we get a map

(2.2) Γc,Ranuntl(Hinf(Z)untl)→ DiffS(Z) ∈ Alg(End(IndCoh(S(Z)))).

Theorem 2.1. If Z ∈ PreSt/XdR is sectionally laft, then (2.2) is an isomoprhism.

This Theorem is the main goal of the talk. We will follow the proof in [R].

Remark 2.8. It suffices to prove the isomorphism between the underlying objects in
End(IndCoh(S(Z)).

3. Proof of the main result.

3.1. Step 1: Reduction to the statement about tangent complexes. We want to employ results
from the first section, therefore we reduce the statement to the non-unital one.

Recall that ι : Ran→ Ranuntl is universally homologically cofinal, hence

Γc,Ranuntl
∼= Γc,Ran ◦ ι!.

Note that (Id⊗ι!)(Hinf(X)untl) ∼= Hinf(Z). Hence we need to show that

Γc,Ran(Hinf(Z))→ DiffS(Z)

arizing by adjunction from

(3.1) Hinf(Z)→ DiffS(Z) �ωRan

is an isomorphism.
Recall the functor

M := (−)!(−)IndCoh
∗ : (PreStlaft−def

nil−iso
S(Z)×Ran/)/Ran → End(IndCoh(S(Z)))⊗D(Ran).

By definition the map (3.1) coincides with

M(
◦
S (Z)∧Ran → S(Z)dR ×Ran).

Chasing (1.4) we see that it suffices to show that

N((
◦
S (Z)∧Ran → S(Z)dR ×Ran)

is an isomorphism. Or, equivalently, that

Γc,Ran ◦N((
◦
S (Z)∧Ran → S(Z)dR ×Ran)

is an isomorphism. Since the filtrations are non-negative, the functors gr in (1.4) are conservative.
Therefore it suffices to show that

(3.2) Γc,Ran(Sym(T (S(Z)×Ran/−)))(
◦
S (Z)∧Ran → S(Z)dR ×Ran)

is an isomorphism in IndCoh(S(Z)).
However, by universal homological cofinality this is equivalent to

(3.3) Γc,Ranuntl(Sym(T (S(Z)×Ranuntl/−)))(
◦
S (Z)∧Ranuntl → S(Z)dR ×Ranuntl)

being an isomorphism. But since Γc,Ranuntl is symmetric monoidal it suffices to show that

(3.4) Γc,Ranuntl(T (S(Z)×Ranuntl/
◦
S (Z)∧Ranuntl))→ Γc,Ranuntl(T (S(Z)×Ranuntl/S(Z)dR×Ranuntl)).

So since T (S(Z)dR ×Ranuntl) ∼= 0 we reduced the main theorem to the following statement:

Theorem 3.2. Let Z ∈ PreSt/XdR be sectionally laft. Then

Γc,Ranuntl ◦ (runtl)!(T (
◦
S (Z)∧Ranuntl)) = 0.
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3.3. Step 2: reduction of theorem 3.2 to statements about Θ(Z). Recall the definition of the
antecedent of the tangent complex:

Definition 3.1. For x : S → S(Z), S ∈ AffSch the sheaves

DSV ◦Oblvfake ◦ ev]x T
∗Z ∈ IndCoh(S ×XdR),

where evx : S×XdR → Z is the section corresponding to x, assemble to Θ(Z) ∈ IndCoh(S(Z)×XdR).

Here is the main property of this sheaf that we are going to use:

Proposition 3.2. T (S(Z)) ∼= (id×pXdR)IndCoh
∗ Θ(Z) ∼= (id×pXdR,∗)Θ(Z), where pXdR : XdR → pt

and pX : X → pt.

The proof of Theorem 3.2 will consist of the following two assertions:

Proposition 3.3. Let Z ∈ PreSt/XdR be sectionally laft. Then

Γc,Ranuntl(T (S(Z)×Ranuntl/
◦
S (Z)∧Ranuntl)) ∈ IndCoh(S(Z))⊗D(Ranuntl)

lies in the essential image of id⊗(ιX)!, where (ιX)! : D(X)→ D(Ranuntl).

Proposition 3.4. Under the isomorphism in Proposition 3.2 the map

id⊗(ιX)!(T (S(Z)×Ranuntl/
◦
S (Z)∧Ranuntl))→ id⊗(ιX)!(T (S(Z)×Ranuntl)) ∼= T (S(Z)) � ωX

identifies with
Θ(Z)→ (id⊗(pX)!) ◦ (Id⊗pXdR,∗)Θ(Z)

given by adjunction.

We now deduce the proof of Theorem 3.2 from these two propositions. Consider the diagram

(Id⊗Γc,Ranuntl)(T (S(Z)×Ranuntl/
◦
S (Z)∧Ranuntl)) (Id⊗Γc,Ranuntl)(T (S(Z)×Ranuntl)

(Id⊗Γc,Ranuntl) ◦ (id⊗(ιX)!)(T (S(Z)×Ranuntl/
◦
S (Z)∧Ranuntl) (Id⊗Γc,Ranuntl) ◦ (id⊗(ιX)!)(T (S(Z)×Ranuntl)

∼= Pr .3.3

pr

By Proposition 3.4the lower composition identifies with
(3.5)

(Id⊗Γc,X)Θ(Z)→ (Id⊗Γc,X)◦(Id⊗(pX)!)◦(Id⊗(pX)dR,∗)Θ(Z)→ (Id⊗Γc,Ranuntl)◦(Id⊗(pRanuntl)
!)◦(Id⊗(pX)dR,∗)Θ(Z).

But counit of the adjoint pair (Γc,Ranuntl), (pRanuntl)!) is identity, hence it suffices to show that the
comoposition of the last map of (3.5) with

(Id⊗Γc,Ranuntl) ◦ (Id⊗(pRanuntl)
!) ◦ (Id⊗(pX)dR,∗)Θ(Z)→ (Id⊗(pX)dR,∗)Θ(Z)

is an isomorphism. This composition identifies with

(Id⊗(pX)dR,∗)Θ(Z)→ (Id⊗(pX)dR,∗)◦ (Id⊗(pRanuntl)
!)◦ (Id⊗(pX)dR,∗)Θ(Z)→ (Id⊗(pX)dR,∗)Θ(Z),

which is isomorphism by adjunction axioms. Hence we proved Theorem 3.2 and therefore Theorem 2.1.
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