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1 What is BunG?

Let us briefly recall what a stack is on the fpqc site Schét.

Definition. A prestack on Sch is a pseudo-functor F : Schop → Gpd, i.e. it is the data of

• for every X ∈ Sch a groupoid F(X),

• for every morphism of schemes f : X → Y a functor F(f) : F(Y ) → F(X),

• for every X ∈ Schét a natural isomorphism

αX : idF(X)
∼= F(idX),

and

• for every pair of composable morphisms X
f−→ Y

g−→ Z a natural isomorphism

βf,g : F(g ◦ f) ∼= F(f) ◦ F(g)

of functors F(Z) → F(X),

satisfying obvious compatibility conditions (which are too tedious to write out).

Definition. A stack on Schét is a prestack F on Sch satisfying the following glueing conditions for any étale
cover {Xi → X}:

• (Glueing Objects) Given an object xi ∈ ob(F(Xi)) and morphisms ϕi,j : xi|Xi,j → xj |Xi,j satisfying the
cocycle condition

ϕi,j |Xi,j,k
◦ ϕj,k|Xi,j,k

= ϕi,k|Xi,j,k

(aka a descent datum for F with respect to the cover {Xi → X}), there exists an object x ∈ obF(X) and
isomorphisms ϕi : x|Xi

∼= xi ∈ F(Xi) such that ϕj,i ◦ϕi|Xi,j = ϕj |Xi,j (i.e. the descent datum is effective).

• (Glueing Morphisms) For any x, y ∈ F(X) and any morphisms ϕi : x|Xi
→ y|Xi

such that ϕi|Xi,j
= ϕj |Xi,j

,
there exists a unique morphism ϕ : x → y in F(X) such that ϕ|Xi

= ϕi (i.e. the presheaf (Y → X) 7→
HomF(Y )(x|Y , y|Y ) on SchX,ét is a sheaf).

Here, we denote Xi,j := Xi ×X Xj and Xi,j,k := Xi ×X Xj ×X Xk as usual.

Remark 1.1. Since we may view sets as groupoids in which the only morphisms are identity morphisms, we can
view sheaves on Schfpqc as stacks as well. In particular, any scheme can be viewed as a stack via its functor of
points.

Remark 1.2. We will also work with stacks on the étale site of SchS for some base scheme S; the above definitions
obviously generalise.

The following examples are going to be very important for us.

Example 1.3. Let G be an algebraic group over a field k (i.e. a smooth affine group scheme of finite type over
k). A principal G-bundle on a k-scheme T (aka a G-torsor over T ) is a k-scheme P equipped with a faithfully
flat map π : P → T (of k-schemes) and a G-action σ : G×k P → P such that (proj2, σ) : G×k P → P ×T P is
an isomorphism of schemes.

We now define the stack BG as the classifying stack of principal G-bundles, i.e. for any T ∈ Schk we set

ob(BG(T )) = {principal G-bundles on T}
HomBG(T )(P, P

′) = {G-equivariant maps P → P ′ over T}.
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That this actually defines a stack is easy enough to check directly, using fpqc descent for morphisms. However,
one can also check that BG is the sheafification of the näıve quotient prestack

(∗/G)naive : S 7→ ∗/G(S),

where ∗/G(S) denotes the groupoid with a single object ∗ and whose automorphism group is G(S). Thus
BG ≃ [∗/G] is a quotient stack. This viewpoint will be useful later.

Example 1.4. Given a k-scheme X and a stack Y on Schk,ét, we can define the stack Hom(X,Y) whose value
on a k-scheme T is the groupoid

Hom(X,Y)(T ) := Y(X ×k T ) = Hom(X ×k T,Y).

It is straightforward to check directly that this satisfies the sheaf axioms since Y does.

Example 1.5. Given morphisms of prestacks f : F → H and g : G → H, we can define their fibre product
F ×H G as follows:

ob(F ×H G(T )) := {(x, y, γ) : x ∈ ob(F(T )), y ∈ ob(G(T )), γ : f(x) ∼= g(y) ∈ H(T ).}

HomF×HG(T )

(
(x1, y1, γ1), (x2, y2, γ2)

)
:=

 (ϕ, ψ)
ϕ ∈ HomF(T )(x1, x2),
ψ ∈ HomG(T )(y1, y2),

f(x1) f(x2)

g(y1) g(y2)

f(ϕ)

∼=
γ1∼= γ2∼=

g(ψ)

∼=


If F ,G,H are stacks (resp. sheaves, resp. schemes), then so is F ×H G.

We now come to our main example.

Example 1.6. Given a smooth projective curve X over a field k, we define

BunG,X := Hom(X,BG).

Given a test scheme T , by unwinding definitions we see that BunG,X(T ) = BG(X ×k T ) is the groupoid of all
principal G-bundles on X ×k T (i.e. families of G-bundles on X parametrized by T ).

In order to define an Artin stack (aka an algebraic stack), we need the following definitions.

Definition. A morphism of prestacks X → Y is representable by schemes if for every morphism T → Y from
a scheme, the fibre product X ×Y T is a scheme.

An algebraic space is a sheaf X on Schét such that there exists a scheme U and a surjective étale morphism
U → X representable by schemes.

A morphism of prestacks X → Y is representable by algebraic spaces if for every morphism T → Y from an
algebraic space, the fibre product X ×Y T is an algebraic space.

An Artin stack is a stack X on Schét such that there exists a scheme X and a surjective smooth morphism
f : X → X representable by algebraic spaces.

Here, it is worth noting what it means for a map of stacks f : X → Y to have certain properties. Given a
property P enjoyed by morphisms of schemes that is stable under base change and étale local on the source (e.g.
surjectivity, smoothness, étaleness, locally of finite presentation, etc), we say that a map X → Y representable
by algebraic spaces has property P if for all schemes T → Y and any étale presentation U → X ×Y T by a
scheme U , the composition U → X ×Y T → T (now a morphism of schemes) has property P.

Schemes are examples of algebraic spaces, and algebraic spaces are examples of Artin stacks.

2 BunGLn,X is an Artin stack

Let us now show that BunGLn,X is an Artin stack whenever X is a smooth projective curve over k. First, note
that GLn bundles on S are equivalent to rank n vector bundles on S (locally free OS-modules), since they
are both determined by the same descent data (a trivialising cover {Si → S} and for each i, j an element of
GLn(Si ×S Sj)). We now sketch a proof of the following result.

Proposition 2.1. BunGLn,X is an Artin stack.
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We now recall some algebraic geometry. Suppose S is a projective k-scheme and OS(1) is some fixed ample
line bundle. Then, Serre’s vanishing theorem says that for any coherent OS-module V, there exists r large
enough such that V(r) := V ⊗OS

OS(1)
⊗r is generated by global sections, i.e.

H0(S,V(r))⊗OS ↠ E(r),

and Hi(S,V(r)) = 0 for i ≥ 1. Notice that H0(S,V(r))⊗OS = π∗π∗V(r) for π : S → Spec k the structure map.
Next, notice that for any vector bundle V ∈ Ur(T ) by the Riemann-Roch theorem

dimH0(Xt,Vt(r)) = degVt(r) + rank(Vt(r))(g − 1) = ndegOX(r) + degVs + n(g − 1)

where g is the genus of X.
Let Ur be the moduli stack of such vector bundles, i.e.

Ur(T ) := {V ∈ BunGLn,X(T ) : RipT∗V(r) = 0 for all i ≥ 1 and p∗T pT∗V(r) → V(r) is surjective}.

Serre’s theorem then tells us that BunGLn,X =
⋃
r≥0 Ur.

Lemma 2.2. Ur is an open subfunctor of BunGLn,X .

Proof Sketch. We need to check that for every scheme T , the fibre product Ur×BunGLn,X
T is an open subscheme

of T . This is the same as asking that, given any vector bundle V on X ×k T , the set of points t ∈ T such that
Vt ∈ Ur(X×k t) is open in T . That Hi(Xs,Vs(r)) = 0 is an open condition is clear, since it is the complement of
the support of RipT,∗V(r). Asking that Vt(r) is globally generated is also an open condition, since the natural
map p∗T pT∗V → V will be surjective on fibres over an open subset of T .

Now, given a coherent OX -module E and a polynomial P ∈ Q[x], Grothendieck showed that the functor

QuotPX/k(E) : Sch
op
k → Set, T 7→

(F , q)

∣∣∣∣∣
F a finitely presented quasi-coherent OX×kT -module

F flat over T and Hilbert polynomial of Ft is P for all t ∈ T

q : E ↠ F a surjection


is a projective k-scheme, so that the functor

QuotX/k(E) : Sch
op
k → Set, T 7→

{
(F , q)

∣∣∣∣∣F a finitely presented quasi-coherent OX×kT -module flat over T

q : E ↠ F a surjection

}
is a disjoint union of projective k-schemes. In particular, it is a k-scheme. Thus, the open subfunctor

QuotlfX/k(E) : Sch
op
k → Set, T 7→

{
(F , q)

∣∣∣∣∣F a vector bundle on X ×k T (so flat over T )

q : E ↠ F a surjection

}

of QuotX/k(E) is a k-scheme. It is then clear that

Yd,r(T ) :=

(F , q, α)

∣∣∣∣∣(F , q) ∈ QuotlfX/k

(
OX(−r)⊕(n degOX(r)+d+n(g−1))

)
(T )

α : OT (−r)⊕(n degOX(r)+d+n(g−1)) ∼= pT∗F


is again an open subscheme of the Quot scheme, and thus in particular is a scheme itself.

By the discussion preceding the lemma, we see that we have a surjection

Yr :=
⋃
d∈Z

Yd,r ↠ Ur

from a scheme Yr onto Ur. Thus we have represented BunGLn
as a quotient of a scheme. Moreover this quotient

is quite well-structured.

Lemma 2.3. Yr → Ur is a GLΦ(r) torsor, where Φ(r) := ndegOX(r) + d+ n(g − 1)

Proof Sketch. Consider any map S → Ur. This is an object of Ur(S), so is actually a vector bundle V on X×k S
satisfying various conditions. Lifting this to Yr is simply picking an isomorphism OΦ(r)

S
∼= pS∗V(r). The set of

such identifications is quite obviously a GLΦ(r)(S)-torsor.

This quotient being a principal GLΦ(r) bundle in particular implies that the map Yr → Ur is smooth (since
GLΦ(r) is itself smooth). This completes the proof that BunGLn,X is an Artin stack.
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3 BunG,X is an Artin stack

We now can prove that BunG,X is an Artin stack, by reducing to the GLn case. To simplify notation, we
suppress the X. Pick any injection G ↪→ GLn (faithful representations always exist).

Proposition 3.1. For any injection of algebraic groups H ↪→ G, the induced map BunH → BunG is repre-
sentable by schemes.

The reason this lemma is useful is because of the following easy result.

Lemma 3.2. If X → Y is representable by schemes and Y is an algebraic space (resp. Artin stack), then X is
also an algebraic space (resp. Artin stack).

We thus deduce immediately the following.

Corollary 3.2.1. BunG is an Artin stack.

Let us now try to prove the proposition. First, we describe the induced map BunH → BunG. Recall that
BunG = Hom(X,BG) and BunH = Hom(X,BH). The map BH → BG sends a T -point π : P → T of BH to
the quotient sheaf (G×k P )/H; that this is a scheme follows by looking at a trivialization - when P is trivial,
so P ≃ H, then (G×k P )/H ≃ G.

Lemma 3.3. BH → BG is quasi-projective and representable by schemes.

Proof Sketch. Suppose we have a morphism T → BG; we want to show that BH ×BG T is a scheme. The
morphism T → BG gives a principal G-bundle π : P → T . We claim that BH ×BG T is the scheme (H\G×k
P )/G. Here, H\G exists as a quotient in schemes since we are working over a field1. Indeed, suppose given
a morphism S → BH (i.e. a principal H-bundle ρ : Q → S) and f : S → T such that we have a commuting
square2.

S T

BH BG

f

Q P

That this commutes is simply asking that PS := S ×T P = (Q ×k G)/H as principal G-bundles over S. Thus
we have G-equivariant morphisms PS → H\G and PS → P over k, so that we have a G-equivariant morphism
Q′ → (H\G) ×k P . However, the data of a morphism S → (H\G ×k P )/G is exactly the data of a principal
G-bundle Q′ → S and a G-equivariant morphism Q′ → H\G×k P .

That BH → BG is quasi-projective follows from the fact that H\G is quasi-projective.

Proposition 3.1 then follows from the following result.

Proposition 3.4. Suppose Y → Z is a quasi-projective map of prestacks that is representable by schemes. Let
X be projective over k. Then, the induced map Hom(X,Y) → Hom(X,Z) is representable by schemes.

Proof Sketch. Fix an S-point of Hom(X,Z), i.e a map S ×k X → Z. Unravelling definitions, the fibre product
Hom(X,Y)×Hom(X,Z) S is the prestack over S that sends an S-scheme S′ to

HomS×kX

(
S′ ×k X,Y ×Z (S ×k X)

)
where note that YS := Y×Z (S×kX) is a quasi-projective scheme over S×kX by assumption. Set Y := Y×ZX.
Then, the above fibre product coincides with the so-called sections functor

SectS(X,Y ) : SchopS,ét → Set, S′ 7→ HomX×kS′(X ×k S′, Y ×k S′) = HomX×kS(X ×k S′, Y ×k S).

It is a fact that the sections functor SectS(X,Y ) is a scheme if X is projective and Y → X is quasi-projective.
As this is true in our case, the proposition follows.

1such a quotient is not necessarily a scheme over an arbitrary base!
2This is a 2-commuting square, which means we need to remember the isomorphism between the two maps; let’s just sweep that

under the rug.
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4 BunG,X is a smooth Artin stack

We now want to check smoothness. For this, we need to use the infinitesimal criterion for smoothness.

Theorem 4.1. Suppose X is an Artin stack locally of finite type over k. Then X is smooth over k if and only
if for all surjections of k-algebras A → A0 with square-zero kernel (i.e. A0 = A/I and I2 = 0) fitting into the
following diagram of solid arrows,

SpecA0 X

SpecA

there exists a lift SpecA→ X making the entire diagram commutative.

Thus, we have reduced to a deformation-theoretic argument.

Proposition 4.2. BunG is smooth over k.

Proof Sketch. Fix a faithful representation G ↪→ GLn. We defined open substacks UGLn,r of BunGLn
when

proving algebraicity; let
Ur := UGLn,r ×BunGLn

BunG.

We use the infinitesimal criterion of smoothness for the stack Ur. Our description of UGLn,r as the quotient of
an open subscheme of a Quot scheme by GL∗ tells us that UGLn,r, and thus Ur, is locally of finite presentation.

Pick any surjection of k-algebras A → A0 with square-zero kernel I, and let V be a A0-point of BunG
(equivalently, a morphism SpecA0 → BunG). Thus V0 is a G-bundle on XA0

:= X ×k SpecA0, and we want to
lift it to a G-bundle on XA := X ×k SpecA. Now, V0 corresponds to a map XA0

→ BG, so we can pull-back
the quasi-coherent sheaf on BG corresponding to the adjoint representation on g = Lie(G) to get a sheaf g(V0)
on X (for example, for G = GLn, we have g(V0) = EndX(V0)). Deformation theory then tells us there exists an
element ob ∈ H2(X, g(V0)) such that ob = 0 if and only if there exists an extension V of V0 to XA. However,
X is a (smooth projective) curve over k, so that H2 vanishes. Hence we can always lift.
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