Geometry of Bun_G

Kush Singhal

February 7 2024

1 What is Bun_G ?

Let us briefly recall what a stack is on the fpqc site $Sch_{\acute{e}t}$.

Definition. A prestack on Sch is a pseudo-functor $\mathcal{F} : \operatorname{Sch}^{op} \to \operatorname{Gpd}$, i.e. it is the data of

- for every $X \in$ Sch a groupoid $\mathcal{F}(X)$,
- for every morphism of schemes $f: X \to Y$ a functor $\mathcal{F}(f): \mathcal{F}(Y) \to \mathcal{F}(X)$,
- for every $X \in \text{Sch}_{\text{\acute{e}t}}$ a natural isomorphism

$$\alpha_X : \mathrm{id}_{\mathcal{F}(X)} \cong \mathcal{F}(\mathrm{id}_X),$$

and

• for every pair of composable morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z$ a natural isomorphism

$$\beta_{f,g}: \mathcal{F}(g \circ f) \cong \mathcal{F}(f) \circ \mathcal{F}(g)$$

of functors $\mathcal{F}(Z) \to \mathcal{F}(X)$,

satisfying obvious compatibility conditions (which are too tedious to write out).

Definition. A *stack* on Sch_{ét} is a prestack \mathcal{F} on Sch satisfying the following glueing conditions for any étale cover $\{X_i \to X\}$:

• (Glueing Objects) Given an object $x_i \in ob(\mathcal{F}(X_i))$ and morphisms $\phi_{i,j} : x_i|_{X_{i,j}} \to x_j|_{X_{i,j}}$ satisfying the cocycle condition

$$\phi_{i,j}|_{X_{i,j,k}} \circ \phi_{j,k}|_{X_{i,j,k}} = \phi_{i,k}|_{X_{i,j,k}}$$

(aka a descent datum for \mathcal{F} with respect to the cover $\{X_i \to X\}$), there exists an object $x \in ob\mathcal{F}(X)$ and isomorphisms $\phi_i : x|_{X_i} \cong x_i \in \mathcal{F}(X_i)$ such that $\phi_{j,i} \circ \phi_i|_{X_{i,j}} = \phi_j|_{X_{i,j}}$ (i.e. the descent datum is effective).

• (Glueing Morphisms) For any $x, y \in \mathcal{F}(X)$ and any morphisms $\phi_i : x|_{X_i} \to y|_{X_i}$ such that $\phi_i|_{X_{i,j}} = \phi_j|_{X_{i,j}}$, there exists a unique morphism $\phi : x \to y$ in $\mathcal{F}(X)$ such that $\phi|_{X_i} = \phi_i$ (i.e. the presheaf $(Y \to X) \mapsto$ $\operatorname{Hom}_{\mathcal{F}(Y)}(x|_Y, y|_Y)$ on $\operatorname{Sch}_{X,\text{ét}}$ is a sheaf).

Here, we denote $X_{i,j} := X_i \times_X X_j$ and $X_{i,j,k} := X_i \times_X X_j \times_X X_k$ as usual.

Remark 1.1. Since we may view sets as groupoids in which the only morphisms are identity morphisms, we can view sheaves on $\operatorname{Sch}_{fpqc}$ as stacks as well. In particular, any scheme can be viewed as a stack via its functor of points.

Remark 1.2. We will also work with stacks on the étale site of Sch_S for some base scheme S; the above definitions obviously generalise.

The following examples are going to be very important for us.

Example 1.3. Let G be an algebraic group over a field k (i.e. a smooth affine group scheme of finite type over k). A principal G-bundle on a k-scheme T (aka a G-torsor over T) is a k-scheme P equipped with a faithfully flat map $\pi : P \to T$ (of k-schemes) and a G-action $\sigma : G \times_k P \to P$ such that $(\text{proj}_2, \sigma) : G \times_k P \to P \times_T P$ is an isomorphism of schemes.

We now define the stack BG as the classifying stack of principal G-bundles, i.e. for any $T \in Sch_k$ we set

$$ob(BG(T)) = \{ \text{principal } G\text{-bundles on } T \}$$

 $\operatorname{Hom}_{BG(T)}(P, P') = \{ G\text{-equivariant maps } P \to P' \text{ over } T \}$

That this actually defines a stack is easy enough to check directly, using fpqc descent for morphisms. However, one can also check that BG is the sheafification of the naïve quotient prestack

$$(*/G)^{\text{naive}}: S \mapsto */G(S),$$

where */G(S) denotes the groupoid with a single object * and whose automorphism group is G(S). Thus $BG \simeq [*/G]$ is a quotient stack. This viewpoint will be useful later.

Example 1.4. Given a k-scheme X and a stack \mathcal{Y} on $\operatorname{Sch}_{k,\operatorname{\acute{e}t}}$, we can define the stack $\operatorname{\underline{Hom}}(X,\mathcal{Y})$ whose value on a k-scheme T is the groupoid

$$\underline{\operatorname{Hom}}(X,\mathcal{Y})(T) := \mathcal{Y}(X \times_k T) = \operatorname{Hom}(X \times_k T, \mathcal{Y}).$$

It is straightforward to check directly that this satisfies the sheaf axioms since \mathcal{Y} does.

Example 1.5. Given morphisms of prestacks $f : \mathcal{F} \to \mathcal{H}$ and $g : \mathcal{G} \to \mathcal{H}$, we can define their fibre product $\mathcal{F} \times_{\mathcal{H}} \mathcal{G}$ as follows:

$$\operatorname{ob}(\mathcal{F} \times_{\mathcal{H}} \mathcal{G}(T)) := \{(x, y, \gamma) : x \in \operatorname{ob}(\mathcal{F}(T)), y \in \operatorname{ob}(\mathcal{G}(T)), \gamma : f(x) \cong g(y) \in \mathcal{H}(T).\}$$
$$\operatorname{Hom}_{\mathcal{F} \times_{\mathcal{H}} \mathcal{G}(T)} \left((x_1, y_1, \gamma_1), (x_2, y_2, \gamma_2) \right) := \left\{ \begin{array}{c|c} (\phi, \psi) \\ \phi \in \operatorname{Hom}_{\mathcal{F}(T)}(x_1, x_2), & f(x_1) \xrightarrow{f(\phi)}{\cong} f(x_2) \\ \psi \in \operatorname{Hom}_{\mathcal{G}(T)}(y_1, y_2), & \cong \downarrow \gamma_1 \\ g(y_1) \xrightarrow{g(\psi)}{\cong} g(y_2) \end{array} \right\}$$

If $\mathcal{F}, \mathcal{G}, \mathcal{H}$ are stacks (resp. sheaves, resp. schemes), then so is $\mathcal{F} \times_{\mathcal{H}} \mathcal{G}$.

We now come to our main example.

Example 1.6. Given a smooth projective curve X over a field k, we define

$$\operatorname{Bun}_{G,X} := \operatorname{\underline{Hom}}(X, BG).$$

Given a test scheme T, by unwinding definitions we see that $\operatorname{Bun}_{G,X}(T) = BG(X \times_k T)$ is the groupoid of all principal G-bundles on $X \times_k T$ (i.e. families of G-bundles on X parametrized by T).

In order to define an Artin stack (aka an algebraic stack), we need the following definitions.

Definition. A morphism of prestacks $\mathcal{X} \to \mathcal{Y}$ is *representable by schemes* if for every morphism $T \to \mathcal{Y}$ from a scheme, the fibre product $\mathcal{X} \times_{\mathcal{Y}} T$ is a scheme.

An algebraic space is a sheaf X on Sch_{ét} such that there exists a scheme U and a surjective étale morphism $U \to X$ representable by schemes.

A morphism of prestacks $\mathcal{X} \to \mathcal{Y}$ is *representable by algebraic spaces* if for every morphism $T \to \mathcal{Y}$ from an algebraic space, the fibre product $\mathcal{X} \times_{\mathcal{Y}} T$ is an algebraic space.

An Artin stack is a stack \mathcal{X} on Sch_{ét} such that there exists a scheme X and a surjective smooth morphism $f: X \to \mathcal{X}$ representable by algebraic spaces.

Here, it is worth noting what it means for a map of stacks $f : \mathcal{X} \to \mathcal{Y}$ to have certain properties. Given a property \mathscr{P} enjoyed by morphisms of schemes that is stable under base change and étale local on the source (e.g. surjectivity, smoothness, étaleness, locally of finite presentation, etc), we say that a map $\mathcal{X} \to \mathcal{Y}$ representable by algebraic spaces has property \mathscr{P} if for all schemes $T \to \mathcal{Y}$ and any étale presentation $U \to \mathcal{X} \times_{\mathcal{Y}} T$ by a scheme U, the composition $U \to \mathcal{X} \times_{\mathcal{Y}} T \to T$ (now a morphism of schemes) has property \mathscr{P} .

Schemes are examples of algebraic spaces, and algebraic spaces are examples of Artin stacks.

2 $\operatorname{Bun}_{\operatorname{GL}_n,X}$ is an Artin stack

Let us now show that $\operatorname{Bun}_{\operatorname{GL}_n,X}$ is an Artin stack whenever X is a smooth projective curve over k. First, note that GL_n bundles on S are equivalent to rank n vector bundles on S (locally free \mathcal{O}_S -modules), since they are both determined by the same descent data (a trivialising cover $\{S_i \to S\}$ and for each i, j an element of $GL_n(S_i \times_S S_j)$). We now sketch a proof of the following result.

Proposition 2.1. $\operatorname{Bun}_{\operatorname{GL}_n,X}$ is an Artin stack.

We now recall some algebraic geometry. Suppose S is a projective k-scheme and $\mathcal{O}_S(1)$ is some fixed ample line bundle. Then, Serre's vanishing theorem says that for any coherent \mathcal{O}_S -module \mathcal{V} , there exists r large enough such that $\mathcal{V}(r) := \mathcal{V} \otimes_{\mathcal{O}_S} \mathcal{O}_S(1)^{\otimes r}$ is generated by global sections, i.e.

$$H^0(S, \mathcal{V}(r)) \otimes \mathcal{O}_S \twoheadrightarrow \mathcal{E}(r),$$

and $H^i(S, \mathcal{V}(r)) = 0$ for $i \ge 1$. Notice that $H^0(S, \mathcal{V}(r)) \otimes \mathcal{O}_S = \pi^* \pi_* \mathcal{V}(r)$ for $\pi : S \to \text{Spec } k$ the structure map. Next, notice that for any vector bundle $\mathcal{V} \in \mathcal{U}_r(T)$ by the Riemann-Roch theorem

$$\dim H^0(X_t, \mathcal{V}_t(r)) = \deg \mathcal{V}_t(r) + \operatorname{rank}(\mathcal{V}_t(r))(g-1) = n \deg \mathcal{O}_X(r) + \deg \mathcal{V}_s + n(g-1)$$

where g is the genus of X.

Let \mathcal{U}_r be the moduli stack of such vector bundles, i.e.

$$\mathcal{U}_r(T) := \{ \mathcal{V} \in \operatorname{Bun}_{\operatorname{GL}_n, X}(T) : R^i p_{T*} \mathcal{V}(r) = 0 \text{ for all } i \ge 1 \text{ and } p_T^* p_{T*} \mathcal{V}(r) \to \mathcal{V}(r) \text{ is surjective} \}$$

Serre's theorem then tells us that $\operatorname{Bun}_{\operatorname{GL}_n,X} = \bigcup_{r>0} \mathcal{U}_r$.

Lemma 2.2. \mathcal{U}_r is an open subfunctor of $\operatorname{Bun}_{\operatorname{GL}_n,X}$.

Proof Sketch. We need to check that for every scheme T, the fibre product $\mathcal{U}_r \times_{\operatorname{Bun}_{\operatorname{GL}_n,X}} T$ is an open subscheme of T. This is the same as asking that, given any vector bundle \mathcal{V} on $X \times_k T$, the set of points $t \in T$ such that $\mathcal{V}_t \in \operatorname{U}_r(X \times_k t)$ is open in T. That $H^i(X_s, \mathcal{V}_s(r)) = 0$ is an open condition is clear, since it is the complement of the support of $R^i p_{T,*} \mathcal{V}(r)$. Asking that $\mathcal{V}_t(r)$ is globally generated is also an open condition, since the natural map $p_T^* p_{T*} \mathcal{V} \to \mathcal{V}$ will be surjective on fibres over an open subset of T.

Now, given a coherent \mathcal{O}_X -module \mathcal{E} and a polynomial $P \in \mathbb{Q}[x]$, Grothendieck showed that the functor

$$\operatorname{Quot}_{X/k}^{P}(\mathcal{E}): \operatorname{Sch}_{k}^{op} \to \operatorname{Set}, T \mapsto \left\{ \begin{array}{c} \mathcal{F} \text{ a finitely presented quasi-coherent } \mathcal{O}_{X \times_{k} T} \text{-module} \\ (\mathcal{F}, q) \middle| \mathcal{F} \text{ flat over } T \text{ and Hilbert polynomial of } \mathcal{F}_{t} \text{ is } P \text{ for all } t \in T \\ q: \mathcal{E} \twoheadrightarrow \mathcal{F} \text{ a surjection} \end{array} \right\}$$

is a projective k-scheme, so that the functor

$$\operatorname{Quot}_{X/k}(\mathcal{E}) : \operatorname{Sch}_k^{op} \to \operatorname{Set}, T \mapsto \left\{ (\mathcal{F}, q) \middle| \begin{array}{c} \mathcal{F} \text{ a finitely presented quasi-coherent } \mathcal{O}_{X \times_k T} \text{-module flat over } T \right\} \\ q : \mathcal{E} \twoheadrightarrow \mathcal{F} \text{ a surjection} \end{array} \right\}$$

is a disjoint union of projective k-schemes. In particular, it is a k-scheme. Thus, the open subfunctor

$$\operatorname{Quot}_{X/k}^{lf}(\mathcal{E}): \operatorname{Sch}_{k}^{op} \to \operatorname{Set}, T \mapsto \left\{ \left(\mathcal{F}, q \right) \middle| \begin{array}{c} \mathcal{F} \text{ a vector bundle on } X \times_{k} T \text{ (so flat over } T) \\ q : \mathcal{E} \twoheadrightarrow \mathcal{F} \text{ a surjection} \end{array} \right\}$$

of $\operatorname{Quot}_{X/k}(\mathcal{E})$ is a k-scheme. It is then clear that

$$Y_{d,r}(T) := \left\{ \left. (\mathcal{F}, q, \alpha) \right| \begin{pmatrix} (\mathcal{F}, q) \in \operatorname{Quot}_{X/k}^{lf} \left(\mathcal{O}_X(-r)^{\oplus (n \deg \mathcal{O}_X(r) + d + n(g-1))} \right)(T) \\ \alpha : \mathcal{O}_T(-r)^{\oplus (n \deg \mathcal{O}_X(r) + d + n(g-1))} \cong p_{T*}\mathcal{F} \end{pmatrix} \right\}$$

is again an open subscheme of the Quot scheme, and thus in particular is a scheme itself.

By the discussion preceding the lemma, we see that we have a surjection

$$Y_r := \bigcup_{d \in \mathbb{Z}} Y_{d,r} \twoheadrightarrow \mathcal{U}_r$$

from a scheme Y_r onto \mathcal{U}_r . Thus we have represented $\operatorname{Bun}_{\operatorname{GL}_n}$ as a quotient of a scheme. Moreover this quotient is quite well-structured.

Lemma 2.3. $Y_r \to \mathcal{U}_r$ is a $\operatorname{GL}_{\Phi(r)}$ torsor, where $\Phi(r) := n \operatorname{deg} \mathcal{O}_X(r) + d + n(g-1)$

Proof Sketch. Consider any map $S \to \mathcal{U}_r$. This is an object of $\mathcal{U}_r(S)$, so is actually a vector bundle \mathcal{V} on $X \times_k S$ satisfying various conditions. Lifting this to Y_r is simply picking an isomorphism $\mathcal{O}_S^{\Phi(r)} \cong p_{S*}\mathcal{V}(r)$. The set of such identifications is quite obviously a $\mathrm{GL}_{\Phi(r)}(S)$ -torsor.

This quotient being a principal $\operatorname{GL}_{\Phi(r)}$ bundle in particular implies that the map $Y_r \to \mathcal{U}_r$ is smooth (since $\operatorname{GL}_{\Phi(r)}$ is itself smooth). This completes the proof that $\operatorname{Bun}_{\operatorname{GL}_n,X}$ is an Artin stack.

3 $\operatorname{Bun}_{G,X}$ is an Artin stack

We now can prove that $\operatorname{Bun}_{G,X}$ is an Artin stack, by reducing to the GL_n case. To simplify notation, we suppress the X. Pick any injection $G \hookrightarrow \operatorname{GL}_n$ (faithful representations always exist).

Proposition 3.1. For any injection of algebraic groups $H \hookrightarrow G$, the induced map $\operatorname{Bun}_H \to \operatorname{Bun}_G$ is representable by schemes.

The reason this lemma is useful is because of the following easy result.

Lemma 3.2. If $\mathcal{X} \to \mathcal{Y}$ is representable by schemes and \mathcal{Y} is an algebraic space (resp. Artin stack), then \mathcal{X} is also an algebraic space (resp. Artin stack).

We thus deduce immediately the following.

Corollary 3.2.1. Bun_G is an Artin stack.

Let us now try to prove the proposition. First, we describe the induced map $\operatorname{Bun}_H \to \operatorname{Bun}_G$. Recall that $\operatorname{Bun}_G = \operatorname{Hom}(X, BG)$ and $\operatorname{Bun}_H = \operatorname{Hom}(X, BH)$. The map $BH \to BG$ sends a *T*-point $\pi : P \to T$ of BH to the quotient sheaf $(G \times_k P)/H$; that this is a scheme follows by looking at a trivialization - when P is trivial, so $P \simeq H$, then $(G \times_k P)/H \simeq G$.

Lemma 3.3. $BH \rightarrow BG$ is quasi-projective and representable by schemes.

Proof Sketch. Suppose we have a morphism $T \to BG$; we want to show that $BH \times_{BG} T$ is a scheme. The morphism $T \to BG$ gives a principal G-bundle $\pi : P \to T$. We claim that $BH \times_{BG} T$ is the scheme $(H \setminus G \times_k P)/G$. Here, $H \setminus G$ exists as a quotient in schemes since we are working over a field¹. Indeed, suppose given a morphism $S \to BH$ (i.e. a principal H-bundle $\rho : Q \to S$) and $f : S \to T$ such that we have a commuting square².

$$S \xrightarrow{f} T$$

$$\downarrow Q \qquad \qquad \downarrow_P$$

$$BH \longrightarrow BG$$

That this commutes is simply asking that $P_S := S \times_T P = (Q \times_k G)/H$ as principal *G*-bundles over *S*. Thus we have *G*-equivariant morphisms $P_S \to H \setminus G$ and $P_S \to P$ over *k*, so that we have a *G*-equivariant morphism $Q' \to (H \setminus G) \times_k P$. However, the data of a morphism $S \to (H \setminus G \times_k P)/G$ is exactly the data of a principal *G*-bundle $Q' \to S$ and a *G*-equivariant morphism $Q' \to H \setminus G \times_k P$.

That $BH \to BG$ is quasi-projective follows from the fact that $H \setminus G$ is quasi-projective.

Proposition 3.1 then follows from the following result.

Proposition 3.4. Suppose $\mathcal{Y} \to \mathcal{Z}$ is a quasi-projective map of prestacks that is representable by schemes. Let X be projective over k. Then, the induced map $\operatorname{Hom}(X, \mathcal{Y}) \to \operatorname{Hom}(X, \mathcal{Z})$ is representable by schemes.

Proof Sketch. Fix an S-point of $\underline{\text{Hom}}(X, \mathcal{Z})$, i.e a map $S \times_k X \to \mathcal{Z}$. Unravelling definitions, the fibre product $\underline{\text{Hom}}(X, \mathcal{Y}) \times_{\underline{\text{Hom}}(X, \mathcal{Z})} S$ is the prestack over S that sends an S-scheme S' to

$$\operatorname{Hom}_{S \times_k X} \left(S' \times_k X, \mathcal{Y} \times_{\mathcal{Z}} \left(S \times_k X \right) \right)$$

where note that $Y_S := \mathcal{Y} \times_{\mathcal{Z}} (S \times_k X)$ is a quasi-projective scheme over $S \times_k X$ by assumption. Set $Y := \mathcal{Y} \times_{\mathcal{Z}} X$. Then, the above fibre product coincides with the so-called sections functor

 $\operatorname{Sect}_{S}(X,Y): \operatorname{Sch}_{S,\operatorname{\acute{e}t}}^{op} \to \operatorname{Set}, \quad S' \mapsto \operatorname{Hom}_{X \times_{k} S'}(X \times_{k} S', Y \times_{k} S') = \operatorname{Hom}_{X \times_{k} S}(X \times_{k} S', Y \times_{k} S).$

It is a fact that the sections functor $\text{Sect}_S(X, Y)$ is a scheme if X is projective and $Y \to X$ is quasi-projective. As this is true in our case, the proposition follows.

¹such a quotient is not necessarily a scheme over an arbitrary base!

 $^{^{2}}$ This is a 2-commuting square, which means we need to remember the isomorphism between the two maps; let's just sweep that under the rug.

4 $Bun_{G,X}$ is a smooth Artin stack

We now want to check smoothness. For this, we need to use the infinitesimal criterion for smoothness.

Theorem 4.1. Suppose \mathcal{X} is an Artin stack locally of finite type over k. Then \mathcal{X} is smooth over k if and only if for all surjections of k-algebras $A \to A_0$ with square-zero kernel (i.e. $A_0 = A/I$ and $I^2 = 0$) fitting into the following diagram of solid arrows,

there exists a lift Spec $A \to \mathcal{X}$ making the entire diagram commutative.

Thus, we have reduced to a deformation-theoretic argument.

Proposition 4.2. Bun_G is smooth over k.

Proof Sketch. Fix a faithful representation $G \hookrightarrow \operatorname{GL}_n$. We defined open substacks $\mathcal{U}_{\operatorname{GL}_n,r}$ of $\operatorname{Bun}_{\operatorname{GL}_n}$ when proving algebraicity; let

$$\mathcal{U}_r := \mathcal{U}_{\mathrm{GL}_n, r} \times_{\mathrm{Bun}_{\mathrm{GL}_n}} \mathrm{Bun}_G.$$

We use the infinitesimal criterion of smoothness for the stack \mathcal{U}_r . Our description of $\mathcal{U}_{\mathrm{GL}_n,r}$ as the quotient of an open subscheme of a Quot scheme by GL_* tells us that $\mathcal{U}_{\mathrm{GL}_n,r}$, and thus \mathcal{U}_r , is locally of finite presentation.

Pick any surjection of k-algebras $A \to A_0$ with square-zero kernel I, and let \mathcal{V} be a A_0 -point of Bun_G (equivalently, a morphism $\operatorname{Spec} A_0 \to \operatorname{Bun}_G$). Thus \mathcal{V}_0 is a G-bundle on $X_{A_0} := X \times_k \operatorname{Spec} A_0$, and we want to lift it to a G-bundle on $X_A := X \times_k \operatorname{Spec} A$. Now, \mathcal{V}_0 corresponds to a map $X_{A_0} \to BG$, so we can pull-back the quasi-coherent sheaf on BG corresponding to the adjoint representation on $\mathfrak{g} = \operatorname{Lie}(G)$ to get a sheaf $\mathfrak{g}(\mathcal{V}_0)$ on X (for example, for $G = \operatorname{GL}_n$, we have $\mathfrak{g}(\mathcal{V}_0) = \operatorname{End}_X(\mathcal{V}_0)$). Deformation theory then tells us there exists an element ob $\in H^2(X, \mathfrak{g}(\mathcal{V}_0))$ such that ob = 0 if and only if there exists an extension \mathcal{V} of \mathcal{V}_0 to X_A . However, X is a (smooth projective) curve over k, so that H^2 vanishes. Hence we can always lift.